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potentials between hadrons. As an example of the method, the extraction of nuclear potential in
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1. Introduction: Current status

1.1 Hadron spectroscopy

As an introduction of my presentation, let me show one figure, which well represents a recent
status of hadron mass calculations in lattice QCD. Fig. 1 shows a ratio of K0 (neutral K meson) to
K+ (charged K meson) propagators as a function of t, which therefore behavior as e−(mK0−mK+ )t '
1− (mK0 −mK+)t at large t but small (mK0 −mK+)t. The fit to data gives mK0 −mK+ = 4.54(1.09)
MeV, which agrees with the experimental value, mK0 −mK+ = 3.937(28) MeV, within a large error.
This result has been obtained by 1+1+1 flavor QCD+QED simulations at the physical quark masses,
where effects of both up-down quark mass difference and the dynamical QED are included by the
reweighting method[1], though the continuum limit has not been taken yet. As represented by this
figure, isospin breaking effects due to both mass and charge differences of up-down quarks can be
included in current lattice QCD calculations.
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FIG. 5: Ratio of K0 to K+ propagators to detect the mass
difference mK0 −mK+ . Our results (black symbol) are con-
sistent with the expected slope from the experimental value
of mK0 −mK+ (red line).

mada, Phys. Rev. D76, 114508 (2007).
[9] S. Basak et al. [MILC Collaboration], PoS LAT-

TICE2008, 127 (2008).
[10] R. Zhou, T. Blum, T. Doi, M. Hayakawa, T. Izubuchi

and N. Yamada, PoS LATTICE2008, 131 (2008).
[11] R. Zhou and S. Uno, PoS LATTICE2009, 182 (2009).
[12] T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, S.

Uno and N. Yamada, Phys. Rev. D82, 094508 (2010).
[13] A. Portelli et al. [Budapest-Marseille-Wuppertal Collab-

oration], PoS LATTICE2010, 121 (2010).
[14] A. Torok et al. [MILC Collaboration], PoS LAT-

TICE2010, 127 (2010).
[15] A. Portelli, PoS LATTICE2011, 136 (2011).
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Figure 1: A ratio of K0 to K+ propagators as a function of t. The results (black symbol) are consistent with
the expected slope from the experimental value (red- line). A figure is taken from Ref. [1].

1.2 Hadron interactions

In lattice QCD, hadron interactions can be investigated by three methods so far, two of which
are standard ones and are briefly discussed here.

The most straightforward method is to calculate nuclei directly in lattice QCD. This method
is the most ab-initio but very difficult, since a number of contractions for quark fields increases
naively as (3A)! where A is an atomic number of a target nucleus1. Moreover a signal to noise ratio
of the nucleus propagator decreases as e−(EA−3Amπ )t for large t, where EA = O(AmN) is the ground
state energy of the nucleus and mπ (mN) is pion (nucleon) mass. Because of these difficulties,
current studies are limited for light nuclei. It is also difficult to apply a result obtained for one
system to other systems.

Fig. 2 shows compilations of recent results for binding energies of 3H (triton) and 4He (helium
4) as a function of pion mass squared m2

π , where solid triangle[3] and circle[4] represent results
obtained by PACS-CS collaboration for quenched and 2+1 flavor QCD, respectively, while open
circle[5] and square[6] represent those obtained by NPL QCD collaboration for 2+1 and 3 flavor

1A method to reduce this number drastically has been proposed recently[2].
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QCD. Although results from two groups are largely scattered, an order of magnitude of binding
energies turns out to be comparable to experimental values. Careful investigations on systematic
errors of course will be needed for more reliable estimation of these binding energies.
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Figure 2: Compilations of binding energy ∆E as a function of m2
π for 3H (left) and 4He (right). Figures are

taken from Ref. [7].

The standard method to investigate hadron interactions in lattice QCD is to calculate scattering
phase shift by the Lüsher’s finite volume method[8], which relates spectra of two particles in the
finite box to scattering phases of these two particles in the infinite volume. This method gives ab-
initio calculations for phase shifts. Once nucleon-nucleon (NN) scattering phase shifts have been
calculated at a sufficiently wide range of energies by this method, for example, one can construct
nuclear potentials form these results, which can be used to calculate nuclear structures by solving
many-body Schrödinger equations.

Fig. 3 plots sin2
δ as a function of the center of mass energy in lattice unit, aECM , where δ is

the phase shift of the π+π-scattering in the isospin I = 1 and the orbital angular momentum L = 1
channel, at mπ ' 330 MeV (left) and mπ ' 290 MeV (right). The solid line in the figure represents
the fit to data by the effective range formula,

tanδ =
g2

ρππ

6π

(E2
CM/4−m2

π)3/2

ECM(m2
ρ −E2

CM)
(1.1)

where mρ is a "mass" of the ρ meson resonance and gρππ is the effective ρ → ππ coupling constant.
Although the pion is still heavier than the physical one, this results shows that hadron resonances
can be treated in current lattice QCD simulations.

2. HAL QCD method to hadron interactions

An alternative method to the previous two standard methods has been proposed recently to in-
vestigate hadron interactions, and is called HAL QCD method[10, 11, 12, 13], which gives the ab-
initio extraction for a potential between two hadrons below inelastic threshold in QCD. The resul-
tant potential has a clear physical interpretation and can be employed for many-body Schrödinger
equations to investigate nuclear structures. We first explain the strategy of the HAL QCD method.
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Figure 3: Phase shift of the π+π− scattering as a function of aECM, together with the fit line to the effective
range formula, at mπ ' 330 MeV (left) and 290 MeV (right). Figures are taken from Ref. [9].

2.1 Strategy

A basic but important quantity is the Nambu-Bethe-Salpeter (NBS) wave function[14], which
is defined, for example, for two nucleons in QCD as

Ψ~k(~x) = 〈0|T{N(~r,0)N(~r +~x,0)}|NN,Wk〉in (2.1)

where 〈0| is the QCD vacuum state, |NN,W 〉in is a two nucleon asymptotic in-state with the total

energy Wk = 2
√

~k2 +m2
N , the nucleon mass mN and a relative momentum~k in the center of mass

system, T means the time ordered product, and N(x) with x = (~x, t) is a nucleon operator.
As x = |~x| becomes large, the NBW wave function satisfies the free Scgrödinger equation,

(Ek −H0)Ψ~k(~x) ' 0, where Ek =~k2/(2µ), H0 = −∇2/(2µ) with the reduced mass µ = mN/2.
Furthermore, an asymptotic behavior of the NBS wave function can be determined in terms of the
phase δ whose existence is implied by the unitarity of the S-matrix in QCD[15, 16, 17]:

Ψ
L
~k
(x) ' AL

sin(kx−Lπ/2+δL(Wk))
kx

, k = |~k| (2.2)

at Wk < Wth ≡ 2mN +mπ for the partial wave with the orbital angular momentum L.
The HAL QCD method is based on an existence of a non-local but energy independent poten-

tial U(~x,~y) which satisfies

(Ek −H0)Ψ~k(~x) =
∫

d3yU(~x,~y)Ψ~k(~y), (2.3)

where the energy-independence means U does not depend on the energy W~k of a particular NBS
wave function. An existence of such U can be shown by explicitly constructing it as

U(~x,~y) =
Wk,Wk′<Wth

∑
~k,~k′

(Ek −H0)Ψ~k(~x)η
−1
~k,~k′

Ψ
†
~k′

(~y), (2.4)

where η
−1
~k,~k′

is an inverse of η~k,~k′ =
∫

d3xΨ
†
~k
(~x)Ψ~k′(~x) in the space spanned by {Ψ~k,Wk < Wth}.

Indeed it is easy to see∫
d3yU(~x,~y)Ψ~p(~y) =

Wk,Wk′<Wth

∑
~k,~k′

(Ek −H0)Ψ~k(~x)η
−1
~k,~k′

η~k′,~p = (Ep−H0)Ψ~p(~x) (2.5)
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for ∀~p with Wp < Wth.
For practical uses, this non-local potential is expanded in terms of derivatives as U(~x,~y) =

V (~x,~∇)δ (3)(~x−~y), which is truncated at lowest few orders. For example, the leading order potential
is simply given by

VLO(~x) =
(Ek −H0)Ψ~k(~x)

Ψ~k(~x)
, (2.6)

where VLO(~x) depends on a particular choice of the NBS wave function, Ψ~k(~x), due to the truncation
of the derivative expansion at the leading order. In the HAL QCD method, once the potential is
obtained, physical observables such as scattering phase shifts and energies of possible bound states
can be extracted by solving Schrödinger equation with this potential.

2.2 Nuclear potentials in lattice QCD

As an example of results in the HAL QCD method, the leading order NN potential in the
isospin-triplet (spin-singlet) channel obtained in 2+1 flavor QCD at mπ ' 700 MeV[18] is plotted
in Fig. 4 (left), together with the multi-Gaussian fit, while the 1S0 scattering phase shift in the
laboratory system obtained from this potential is compared with experimental data in Fig. 4(right).
Both potential and the scattering phase shift well reproduce qualitative features of the nuclear
force, though the attraction at low energy is still weaker than experimental one, probably due to the
heavier pion mass than physical value mπ ' 135 MeV.
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Figure 4: (Left) The isospin-triplet NN central potential VC at the leading order of the derivative expansion
as a function of r = |~x| with the multi-Gaussian fit by the solid line. (Right) The scattering phase shift in 1S0

channel as a function of the laboratory energy Elab, together with experimental data[19]. Both figures are
taken from Ref. [18].

2.3 Convergence of the derivative expansion

If higher order terms in the derivative expansion are large, the leading order potentials may
depend on energies of the NBS wave functions from which the potential is extracted as in eq. (2.6).
Such truncation ambiguities to the potential have been checked in several cases. Fig. 5 (left) shows
a comparison of the leading order spin-singlet potential in quenched QCD between two energies
in the center of mass system, one is Ek ' 0 MeV (blue) and the other is Ek ' 45 MeV (red)[20].
Almost no difference of potentials is seen between two energies, indicating that higher order terms
in the derivative expansion turn out to be very small at low energy in the HAL QCD method.
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Fig. 5 (right) compares phase shifts of the I = 2 ππ scattering in quenched QCD calculated
from the potential obtained at Ek ' 0 MeV in the HAL QCD method with those obtained directly
at several energies by the Lüsher’s finite volume method. As the figure tells, both methods agree
extremely well. This result establishes a validity of the HAL QCD’s potential method and shows a
good convergence of the derivative expansion.
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Figure 5: (Left) A comparison of the leading order potential in the is spin-singlet channel at Ek ' 0 MeV
(blue) and Ek ' 45 MeV (red) in quenched QCD. A figure is taken from Ref. [20]. (Right) Phase shifts of the
I = 2 ππ scattering obtained from the HAL QCD method and Lüsher’s finite volume method in quenched
QCD. The red (green) band is obtained by the HAL QCD method at spatial extension L = 3.7 (1.8) fm and
Ek ' 0 MeV, while the point data are obtained by the Lüsher’s method. A figure is taken from Ref. [21].

3. Discussions

The HAL QCD method provides an alternative but very powerful method to investigate hadron
interactions in (lattice) QCD. The nuclear potential, calculated in the method, reproduces qualita-
tive features of the nuclear force, not only medium to long distance attractions but also the short
distance repulsion, the repulsive core.

-1200

-1000

-800

-600

-400

-200

   0

 200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

V(
r) 

[M
eV

]

r [fm]

V(1)

(a)

-200

-150

-100

 -50

   0

0.0 0.5 1.0 1.5 2.0

L=4 [fm]
L=3 [fm]
L=2 [fm]

Fit

-60

-50

-40

-30

-20

-10

 0

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Bo
un

d 
st

at
e 

en
er

gy
   
E 0

   
[M

eV
]

Root-mean-square distance   ��r2�   [fm]

H-dibaryonMPS = 1171 [MeV]
MPS = 1015 [MeV]
MPS = 837 [MeV]
MPS = 672 [MeV]
MPS = 469 [MeV]

Figure 6: (Left) The flavor singlet potential as a function of r on three volumes. A figure is taken from
Ref. [22]. (Right) The binding energy E0 and the root-mean square distance

√
〈r2〉 of the H-dibaryon in the

flavor SU(3) limit at several values of the pseudo-scalar meson mass. A figure is taken from Ref. [23].

The method can be easily applied to other systems. Fig. 6 (left) shows the SU(3) flavor singlet
potential in the 3-flavor QCD with degenerate up-down-strange quarks[22, 23], which has only
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attractions at all distances. This attraction produces one bond state, H-dibaryon, whose binding
energy is shown in Fig. 6 (right). It is interesting to investigate the fate of this state in nature[24].
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