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Possible bound states in the TQs and TQQ′ systems
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The heavy-strange tetraquarks (TQs = udsQ) and the doubly heavy tetraquarks (TQQ′ = udQQ′)
in the S-wave state are investigated by a quark model. Suppose the ud pair is in the spin 0
isospin 0 color 3̄ configuration, there will be an about 150 MeV attraction from the color magnetic
interaction (CMI). The pair in the spin 1 isospin 0 color 6 configuration also gets a small attraction
of about 25 MeV. We classified the systems according to the quantum numbers of the ud pair
and evaluate the size of CMI in the short range region. There is a large attraction in the udQQ

I(JP)=0(1+) (Tcc) and in the udQQ′ 0(0+) and 0(1+) configuration. A dynamical calculation is
also performed for these states with a simple quark model by employing the resonating group
method. It is found that there is a bound state in the udbb I(JP)=0(1+) (Tbb) state. The present
model does not include the long range meson exchange interaction yet. There might be more
bound states if their effects are introduced.

XV International Conference on Hadron Spectroscopy-Hadron 2013
4-8 November 2013
Nara, Japan

∗Speaker.
†This work is partly supported by JSPS KAKENHI Grant Numbers 20540281, 21105006.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:s.takeuchi@jcsw.ac.jp


P
o
S
(
H
a
d
r
o
n
 
2
0
1
3
)
0
6
2

Possible bound states in the TQs and TQQ′ systems Sachiko Takeuchi

1. Introduction

Recent experiments on the charmed systems have shown us a new stage of the hadron physics.
For example, the X(3872) has been found by first by Belle in the J/ψππK observation from the
B decay, and then confirmed by various experiments [1, 2]. The state is found to be JPC = 1++

[3], and it is very difficult to explain its features if one assumes a simple cc configuration. It is
considered to have (at least) a large amount of the qcqc component.

One of the successful approaches to explain the X(3872) behaviors is to consider the system
as a two-meson state which couples to the cc configuration [4]. In this model, the X(3872) is a
superposition of a two-meson molecular state and the cc̄(2P) quarkonium. The model explains a
rough production ratio of X(3872) to the J/ψ in the pp collision, the absence of the charged partner
of X(3872) which decays to J/ψρ±, a lack of the χc1(2P) peak above the open charm threshold
predicted by the quark model, and the isospin symmetry breaking in the X(3872) decay [5].

It has been pointed out that the Tcc (ccud or udcc, I(JP) = 0(1+)) or similar other double charm
or double bottom flavor mesons may exist as a bound state(s) [6, 7, 8, 9, 10]. They, however, do not
agree on the point whether there really is a bound state. The corresponding energy region seems to
be partly within the reach of the experiments. In this work, we extend the above approach for the
X(3872) to investigate the qqsQ and qqQQ′ systems hoping to contribute this still open problem.

2. Model

First we explain the quark model from which we extract the two meson interaction. They are
defined as:

Hq = H0 +V with H0 =
4

∑
i

√
m2

i + p2
i and V =Vconf +Vcoul +VCMI, (2.1)

where the mi and pi are the mass and the 3-momentum of the ith quark (or antiquark). We set
the system is at rest (pG = 0). As for the interaction between quarks, we employ the one used in
the ref. [11]. In order to apply their interaction in the multiquark systems, we modified them to
depend not to the momentum but to the flavors of the interacting quarks. The potential consists of
the linear confinement term, Vconf, and the one-gluon exchange (OGE) term. The latter consists of
the Coulomb term, Vcoul, and the color magnetic interaction, VCMI.

Vcoul = ∑
i< j

(λi ·λ j)

4
αi j

ri j
(2.2)

Vconf = ∑
i< j

(λi ·λ j)

4

(
− 4

3

)−1
(vb ri j + vc) (2.3)

VCMI =−∑
i< j

(λi ·λ j)

4
(σi ·σ j)

2π
3

αi j
ξi j

mim j
δ 3(ri j) (2.4)

The values of the parameters are listed in Table 1.
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Table 1: The quark model parameters

mu (MeV) ms (MeV) mc (MeV) mb (MeV) vb (MeVfm−1) vc (MeV)
220 419 1628 4977 912 −253

qq uu us uc ub ss sc sb cc cb bb
bqq 0.4216 0.4030 0.3684 0.3580 0.3787 0.3390 0.3262 0.2619 0.2272 0.1665
αqq 0.9737 0.9229 0.6920 0.5921 0.8506 0.6709 0.5794 0.5947 0.5231 0.4695
ξqq 0.1238 0.1688 0.2386 0.2529 0.2202 0.3696 0.3942 0.5883 0.6837 0.9838

Table 2: Matrix elements of the color and the color-spin operator for two light quarks in the (quark spin,
color)Isospin states. The isospin for qq can be either 0 or 1.

qq or qq qq

(S, color)I (0, 3̄)0 (1, 3̄)1 (0, 6)1 (1, 6)0 (0, 1) (1, 1) (0, 8) (1, 8)

⟨λλ ⟩ −8/3 −8/3 4/3 4/3 −16/3 −16/3 2/3 2/3

−⟨λλσσ⟩ −8 8/3 4 −4/3 −16 16/3 2 −2/3

In order to see if there is an actual bound state, we perform a dynamical calculation. We
explain the model with the qqsc 0(2+) case in the following. The wave function is assumed as:

Ψ = ∑
i

c1
i
(ud −du)sb√

2
χσ

2

(
|(11)1⟩color

13;24 χi(13;24)+ |(11)1⟩color
14;23 χi(14;23)

)
+∑

i
c8

i
(ud −du)sb√

2
χσ

2

(
|(88)1⟩color

13;24 χi(13;24)+ |(88)1⟩color
14;23 χi(14;23)

)
(2.5)

χi(13;24) = ϕ(b13,r13)ϕ(b24,r24)ϕ(bi,R13 −R24) (2.6)

where ϕ(b,r) is the gaussian wave function with the size parameter b, |(11)1⟩color
13;24 is the color part

of the wave function in which each of the 1st-3rd quark pair and 2nd-4th quark pair is in the color
singlet configuration. In this restricted model space, the equation of the motion (Resonating group
method equation) can be obtained from the hamiltonian for quarks (eq. 2.1):

(K +V −EN )ψ̄ = 0 with O =
∫

Ψ(R)OΨ(R′) (2.7)

Ψ f (R) =
(ud −du)sb√

2
χσ

2

(
|(ff)1⟩color

13;24 χ(13;24,R)+ |(ff)1⟩color
14;23 χ(14;23,R)

)
(2.8)

χ(13;24,R) = ϕ(b13,r13)ϕ(b24,r24)δ (R13 −R24 −R) (2.9)

By restricting the configuration as above, the van der Waals force from the confinement potential
disappears, which is the model artifact appearing in the multiquark systems.
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3. Results and discussion

In Table 2, we show the matrix elements of (λ1 ·λ2) and −(λ1 ·λ2)(σ1 ·σ2) for the qq, qq and
qq pairs. It shows that CMI is attractive in the (S, color)I = (0, 3̄)0 and (1, 6)0 qq or qq pairs. It is
also attractive in the (S, color) = (0, 1) qq pairs, namely in the (pseudo)scalar mesons. Comparing
that in the vector meson, (1, 1), CMI in the (1, 3̄)1 pair can be attractive.

In Table 3, we show the expectation values of CMI assuming that every size parameter of two
quarks in the orbital part of the wave function is the same as that in the mesons with corresponding
flavors (see bqq in Table 1). For each quantum number, we show the possible spin-color configura-
tion of qq and QQ pairs together with the diagonal CMI matrix elements. We also show the lowest
eigenvalue of the CMI obtained when considering the mixing of those configurations. There are
four configurations whose CMI is more attractive than that of the threshold in this very simple
estimate: qqcc I(JP) = 0(1+), qqsc 0(0+), 0(1+), and 0(2+). Note that all of these states are iso-
singlet. Note also that, since the λλ is positive for the color 6 configuration, the color Coulomb
term will prevents the two quarks to come close to each other. So, the (s, 6)(s′ 6) contribution
should be considered as the mixing of the two meson states, (sm, 1)(s′m 1), which also has the color
6 components, rather than the (s, 6)(s′ 6) cluster states.

As a dynamical calculation, we solve the RGM equation (2.7). There is a bound state with
the binding energy 30 MeV in the udbb I(JP)=0(1+) channel. In other channels we find no bound
states. This calculation should be regarded as an estimate which may have a large model depen-
dence. To obtain more reliable results, one should investigate at least the following four points. (a)
In this model, the meson exchange between the u and d quarks is neglected. Namely, the situation
corresponds to, for example, the NN system without the long-range interaction. (b) The kinetic
term should be modified so that the clusters move with the observed meson masses. (c) The effects
of the momentum dependence in the original quark interaction should be re-introduced because it
will change the interaction range effectively. (d) To calibrate the interaction between the qq or QQ′

quarks, it should be investigated whether this simplified quark model can also give the features of
the uuQ or usQ baryons, which were reproduced by the original model [11].

Our approach to extract a hadron potential from the quark model enables us to investigate the
resonances as well as the bound state. Though the system is in the S-wave, there is a possibility
that the resonances appear if they are below the upper thresholds such as D∗D∗.

4. Summary

We have investigated the heavy-heavy and the heavy-strange tetraquark systems by a quark
model. The eigenvalues of the color magnetic interaction can be very attractive. In a dynamical
calculation, we find a bound state in the udbb I(JP)=0(1+) channel even though our calculation
is performed without the long-range meson exchange force. The two-meson potential can be con-
structed from the resonating group model equation, which enables us to investigate the scattering
states.
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Table 3: Possible four-quark orbital states and their color-spin configurations. The numbers a[b] or a[b/c] for
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qqQQ 0(0+) -

0(1+) (0,3̄)0(1,3̄) −8 8/3ζcc 0 −207[−188] DD∗ −71[−23]

(1,6)0(0,6) −4/3 4ζcc 0

0(2+) - -

1(0+) (1,3̄)1(1,3̄) 8/3 8/3ζcc −32/3ζc −80[−27] DD −213[−69]

(0,6)1(0,6) 4 4ζcc 0

1(1+) (1,3̄)1(1,3̄) 8/3 8/3ζcc −16/3ζc 43[60] DD∗ −71[−23]

1(2+) (1,3̄)1(1,3̄) 8/3 8/3ζcc 16/3ζc 114[83] D∗D∗ 71[23]

qqQQ′ 0(0+) (0,3̄)0(0,3̄) −8 −8ζsc 0 −569[−472/−275] KD −405[−333/−141]

(1,6)0(1,6) −4/3 −4/3ζsc −40/3(ζs +ζc)

0(1+) (0,3̄)0(1,3̄) −8 8/3ζsc 0 −344[−363/−217] KD∗ −263[−287/−95]

(1,6)0(0,6) −4/3 4ζsc 0

(1,6)0(1,6) −4/3 −4/3ζsc −20/3(ζs +ζc)

0(2+) (1,6)0(1,6) −4/3 −4/3ζsc 20/3(ζs +ζc) 128[104/23] K∗D∗ 135[111/47]

1(0+) (1,3̄)1(1,3̄) 8/3 8/3ζsc −16/3(ζs +ζc) −228[−184/−30] KD −405[−333/−141]

(0,6)1(0,6) 4 4ζsc 0

1(1+) (1,3̄)1(0,3̄) 8/3 −8ζsc 0 −155[−158/−9] KD∗ −263[−287/−95]

(1,3̄)1(1,3̄) 8/3 8/3ζsc −8/3(ζs +ζc)

(0,6)1(1,6) 4 −4/3ζsc 0

1(2+) (1,3̄)1(1,3̄) 8/3 8/3ζsc 8/3(ζs +ζc) 150[126/95] K∗D∗ 135[111/47]

[2] N. Brambilla, et al., Eur. Phys. J. C71, 1534 (2011).

[3] R. Aaij et al. [LHCb Collaboration] Phys. Rev. Lett. 110 222001, (2013).

[4] M. Takizawa, and S. Takeuchi, Prog. Theor. Exp. Phys. 2013 0903D01, (2013).

[5] S. Takeuchi, M. Takizawa, and K. Shimizu, Few-Body Systems, Online First, DOI:
10.1007/s00601-013-0784-0.

[6] H. J. Lipkin, Phys. Lett. B 172, 242 (1986).

[7] S. Zouzou, B. Silvestre-Brac, C. Gignoux and J. M. Richard, Z. Phys. C 30, 457 (1986).

[8] S. Ohkoda, Y. Yamaguchi, S. Yasui, K. Sudoh and A. Hosaka, Phys. Rev. D 86, 034019 (2012).

[9] S. H. Lee and S. Yasui, Eur. Phys. J. C 64, 283 (2009).

[10] Y. Ikeda, et al., arXiv:1311.6214 [hep-lat].

[11] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).

5


