Hadron Spectroscopy
 in Two-Photon Collisions at Belle

We present recent measurement in two-photon collision, $\gamma \gamma \rightarrow K_{S} K_{S}$ from the Belle experiment. In lower energy region, we perform partial wave analysis and extract parameters for f_{J} and a_{J} resonances. In higher energy region, we update our previous measurement and make comparison with QCD predictions.

Hideyuki Nakazawa (Belle Collaboration)

National Central University (R.O.C.)
E-mail: nkzw@post.kek.ip

[^0]

Figure 1: W distribution of signal candidates in $\left|\cos \theta^{*}\right|<0.8$. Crosshatched and hatched histograms are non-exclusive background and four-pion background, respectively.

1. Introduction

The Belle experiment has measured exclusive meson-pair productions in two-photon colli-
 measurements are based on no-tag method where $e^{+} e^{-}$beam particles escape through beam pipe and thus must not be detected to make sure almost-zero virtuality of colliding photons. In this configuration total transverse momentum of the final state hadron system in $e^{+} e^{-}$frame, $\sum \vec{p}_{t}^{*}$, balances, and photon-photon colliding axis, which cannot be determined, is well approximated with the $e^{+} e^{-}$colliding axis. Because energy of photons emitted from $e^{+} e^{-}$beams are not constant we obtain spectrum of cross section as a function of two-photon invariant mass W that is determined as invariant mass of final state hadron system.

The differential cross section is calculated as

$$
\begin{equation*}
\frac{d \sigma}{d\left|\cos \theta^{*}\right|}\left(W,\left|\cos \theta^{*}\right|\right)=\frac{\Delta N\left(W,\left|\cos \theta^{*}\right|\right)}{\Delta W \Delta\left|\cos \theta^{*}\right| \frac{d L_{\gamma \gamma}}{d W} \varepsilon\left(W,\left|\cos \theta^{*}\right|\right) \int \mathscr{L} d t} \tag{1.1}
\end{equation*}
$$

where θ^{*} is the scattering angle of the final state meson with respect to photon-photon axis in two-photon center-of-mass system, $\frac{d L_{\gamma \gamma}}{d W}$ is the luminosity function, ε is total efficiency including branching fractions, and $\int \mathscr{L} d t$ is the integrated luminosity.

We present measurement of K_{S} pair production in two-photon collisions using a data sample of $972 \mathrm{fb}^{-1}$. This study is published as Ref [$[\mathbb{Z}]$. This process has been measured by various experiments [[0]] with at most $1 \mathrm{fb}^{-1}$ of data. Although these experiments operated at higher $e^{+} e^{-}$ c.m. energies, the cross section in two-photon processes depends on the $e^{+} e^{-}$c.m. energy only logarithmically.

2. Study of f_{J} and a_{J} resonances

Figure $\mathbb{I l}$ shows signal candidate distribution, where in addition to well known resonances, structures around 1.7, 2.2 and 2.5 GeV are seen. We perform fits to $W<2.0 \mathrm{GeV}$ and $2.0<W<$

Figure 2: Measured cross sections and fit results for $W<2.0 \mathrm{GeV}$ (left) and $2.0<W<3.0 \mathrm{GeV}$ (right). Dotted, dashed, and dot-dashed curves are $|S|^{2},\left|D_{0}\right|^{2}$, and $\left|D_{2}\right|^{2}$ partial waves, respectively.

Table 1: Obtained parameters for $f_{2}^{\prime}(1525), f_{0}(1710), f_{2}(2200)$, and $f_{0}(2500)$.

	mass $\left(\mathrm{MeV} / c^{2}\right)$	width (MeV)	$\Gamma_{\gamma \gamma} \mathscr{B}(K \bar{K})(\mathrm{eV}),(J, \lambda)$
$f_{2}^{\prime}(1525)$	$1525.3_{-1.4-2.1}^{+1.2+3.7}$	$82.9_{-2.2-2.0}^{+2.1+3.3}$	$48_{-8-12}^{+67+108}$
$f_{0}(1710)$	1750_{-7-18}^{+6+29}	139_{-12-50}^{+11+96}	12_{-2-8}^{+3+227}
$f_{2}(2200)$	2243_{-6-29}^{+7+3}	$145 \pm 12_{-344}^{+27}$	$3.2_{-0.4-2.2}^{+0.5+1.3}$
$f_{0}(2500)$	$2539 \pm 14_{-14}^{+38}$	$274_{-61-163}^{+77+126}$	40_{-7-40}^{+9+17}

3.0 GeV regions separately, assuming $f_{2}(1270), a_{2}(1320)$, and $f_{2}^{\prime}(1525)$ states in the lower region and $f_{J}(1710), f_{J}(2200)$, and $f_{J}(2500)$ states in the higher region, using

$$
\begin{equation*}
\frac{d \sigma\left(\gamma \gamma \rightarrow K_{S} K_{S}\right)}{d \Omega}=\left|S Y_{0}^{0}+D_{0} Y_{2}^{0}\right|^{2}+\left|D_{2} Y_{2}^{2}\right|^{2} \tag{2.1}
\end{equation*}
$$

where Y_{J}^{λ} are the spherical harmonics and S and D_{λ} are, respectively, helicity- λ components of S and D amplitudes that consist of Breit-Wigner for resonance and polynomial functions for background components. Figure \square shows the differential cross sections and fit results for the two energy regions. The relative phase between $a_{2}(1320)$ and $f_{2}(1270)$ is measured to be $\left(172.6_{-0.7-7.0}^{+6.0+12.2}\right)^{\circ}$, hence destructive interference suggested by Ref. [1]] is confirmed as measured by previous measurements [10]]. The $f_{2}^{\prime}(1525)$ parameters are measured taking inteference effect into account for the first time. Spin-0 is favored over Spin-2 for $f_{J}(1710)$. We found that the assignment of $f_{2}(2220)$ and $f_{0}(2500)$ gives the best solution over the second best with 3.4σ. Measured parameters for these
 their total widths and $\Gamma_{\gamma \gamma} \mathscr{B}(K \bar{K})$ values are much larger than those expected for a pure glueball state.

3. Study of QCD in $W>2.6 \mathrm{GeV}$

In this energy region, we update our previous measurement [[$\sqrt{\text {] }}$. The handbag model predicts $1 / \sin ^{4} \theta^{*}$ dependence of the differential cross section [[2]]. Figure [] (left) shows measured differential cross section and fits to $1 / \sin ^{\alpha} \theta^{*}$. α increases with W in $W<2.7 \mathrm{GeV}$ and does not approach 4 (Fig. [] (right,top)). The slope parameter n that indicates W dependence of the cross

Figure 3: (left) Angular dependence of the differential cross section for different energy region. Points are data and curves are fit results to $1 / \sin ^{\alpha} \theta^{*}$. With right vertical scale, the differential cross sections are normalized to unity over this angular region. (right top) W dependence of the parameter α. The horizontal line at $\alpha=4$ corresponds to the claim from non-perturbative calculation. (right bottom) Cross sections in $\left|\cos \theta^{*}\right|<0.8$ (a) and in $\left|\cos \theta^{*}\right|<0.6$ (b) and fits to W^{-n} in 2.6-4.0 GeV excluding charmonia region (dashed line) and in $2.6-3.3 \mathrm{GeV}$ (solid line).

Table 2: Measured $\chi_{c 0}$ and $\chi_{c 2}$ parameters. Width of $\chi_{c 2}$ is fixed to 2 MeV .

Interference	$\Gamma_{\gamma \gamma} \mathscr{B}\left(\chi_{c 0}\right)$	$\Gamma_{\gamma \gamma} \mathscr{B}\left(\chi_{c 2}\right)$	$\operatorname{Mass}\left(\chi_{c 0}\right)$ (eV)	Width $\left(\chi_{c 0}\right)$ (eV)	$\operatorname{Mass}\left(\chi_{c 2}\right)$ $\left(\mathrm{MeV} / c^{2}\right)$
	$\mathrm{MeV})$				
Not included	$8.09 \pm 0.58 \pm 0.83$	$0.268_{-0.037}^{+0.041} \pm 0.028$	3414.8 ± 0.9	13.2 ± 2.1	3555.4 ± 1.3
Included	$8.7 \pm 1.7 \pm 0.9$	$0.27_{-0.06}^{+0.07} \pm 0.03$	3414.6 ± 1.1	13.2 ± 2.1	3555.4 ± 1.3

Table 3: Upper limits at 90% confidence level on charmonium productions.

R	$\Gamma_{\gamma \gamma}(R) \mathscr{B}\left(R \rightarrow K_{S} K_{S}\right) \mathrm{eV}$
$\chi_{c 0}(2 P)$	0.49
$\chi_{c 2}(2 P)$	0.064
η_{c}	1.6

section, $\sigma \sim W^{-n}$ is measured to be $n=11.0 \pm 0.4 \pm 0.4\left(\left|\cos \theta^{*}\right|<0.8,2.6-4.0 \mathrm{GeV}\right.$ excluding charmonia region) and is in good agreement with perturbative QCD calculation [[13].

4. Study of charmonia

Figure T is candidate events in $\left|\cos \theta^{*}\right|<0.5 . \chi_{c 0}$ and $\chi_{c 2}$ peaks are evident. We fit these peaks with and without interference. The results (Table ($)$) supersede the previous measurement [$[\sqrt{ }]$. We set upper limits at 90% confidence level on $\Gamma_{\gamma \gamma} \mathscr{B}\left(\rightarrow K_{S} K_{S}\right)$ for expected $\chi_{c 0}(2 P)$ and $\chi_{c 2}(2 P)$ mesons, and P - and $C P$-violating decay $\eta_{c} \rightarrow K_{S} K_{S}$ as summarized in Table.B].

Figure 4: Measured cross sections and fit results for $W<2.0 \mathrm{GeV}$ (left) and $2.0<W<3.0 \mathrm{GeV}$ (right). Dotted, dashed, and dot-dashed curves are $|S|^{2},\left|D_{0}\right|^{2}$, and $\left|D_{2}\right|^{2}$ partial waves, respectively.

5. Conclusion

We perform partial wave analysis and extract parameters of a_{J} and f_{J} resonances in lower W region up to around 2.5 GeV , In higher energy region where resonance effect is small, we update our previous study [$[\boxed{d}]$, and evaluate QCD calculations by measuring differential cross section. We also measure parameters of $\chi_{c 0}$ and $\chi_{c 2}$, and set upper limits on another charmonium productions.

References

[1] T. Mori et al. (Belle Collaboration), Phys. Rev. D 75, 051101(R) (2007); T. Mori et al. (Belle Collaboration), J. Phys. Soc. Jpn 76, 074102 (2007).
[2] H. Nakazawa et al. (Belle Collaboration), Phys. Lett. B 615, 39 (2005).
[3] S. Uehara, Y. Watanabe et al. (Belle Collaboration), Phys. Rev. D 78, 052004 (2008); S. Uehara, Y. Watanabe, H. Nakazawa et al. (Belle Collaboration), Phys. Rev. D 79, 052009 (2009).
[4] K. Abe et al. (Belle Collaboration), Eur. Phys. J. C 32, 323 (2004).
[5] W.T. Chen et al. (Belle Collaboration), Phys. Lett. B 651, 15 (2007).
[6] S. Uehara, Y. Watanabe, H. Nakazawa et al. (Belle Collaboration), Phys. Rev. D 80, 032001 (2009).
[7] S. Uehara, Y. Watanabe, H. Nakazawa et al. (Belle Collaboration), Phys. Rev. D 82, 073011 (2010).
[8] S. Uehara et al. (Belle Collaboration), Phys. Rev. Lett. 96, 082003 (2006).
[9] Y. Watanabe et al. (Belle Collaboration), Prog. Theor. Exp. Phys. 2013, 123C01 (2013).
[10] M. Althoff et al. (TASSO Collaboration), Phys. Lett. B 121, 216 (1983); M. Althoff et al. (TASSO Collaboration), Z. Phys. C 29, 189 (1985); C. Berger et al. (PLUTO Collaboration), Z. Phys. C 37, 329 (1988); H.J. Behrend et al. (CELLO Collaboration), Z. Phys. C 43, 91 (1989); M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 501, 173 (2001).
[11] H. Lipkin, Phys. Lett. 59B, 269 (1975).
[12] M. Diehl, P. Kroll and C. Vogt, Phys. Lett. B 532, 99 (2002).
[13] S.J. Brodsky and G.P. Lepage, Phys. Rev. D 24, 1808 (1981); V.L. Chernyak, Phys. Lett. B 640, 246 (2006); V.L. Chernyak, arXiv 1212.1304 [hep-ph]: contributed to "Workshop on QCD in two-photon processes", 2-4 October 2012, Taipei.

[^0]: XV International Conference on Hadron Spectroscopy-Hadron 2013
 4-8 November 2013
 Nara, Japan

