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NA andAA dibaryon candidates are discussed and related quark-bakedations are reviewed.
New hadronic calculations df = 0 nonstrange dibaryon candidates are reported. NZor
1(JP) = 1(2*) and 21+) Smatrix poles slightly below threshold are found by solvintyN
Faddeev equations with relativistic kinematics, and¥arseveralS-matrix poles below threshold
are found by solvingtNA Faddeev equations with relativistic kinematics in whicé N2\ inter-
action is dominated by the2+) and 21*) resonating channels. In particular, t{g") = 0(3*)
AA dibaryon candidaté/y3(2370 observed recently by the WASA@COSY Collaboration is nat-
urally explained in terms of long-range physics dominatggibns, nucleons anfi's. These cal-
culations are so far the only ones to reproduce the relsitsrabll widtha70 MeV of Zy3(2370).
Predictions are also made for the location and widtkved, thel (JP) = 3(0™) exotic partner of
P03(2370).
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1. Introduction

QCD-motivated studies of six-quarkqpdibaryons started with Jaffe’s prediction of the deeply
bounduuddss (JP) = 0(0*) H dibaryon [1] using the color-magnetic (CM) one-gluon exchange
interactionVem = ¥ —(Ai - Aj)(s - sj)Vv(rij), wherev(rjj) is a flavor conservingq short-range
potential which for a totally symmetric = 0 wavefunction is approximated by its matrix element
M. From theA —N mass difference o£300 MeV, one estimateg?y ~75 MeV. Leading dibaryon
candidates for strangeness ranging from 0 to—3 are listed in Table 1, whe@ < Vcu > is the
contribution of\Vcy to the dibaryon mass with respect to its contribution to the dibaryon’s con-
stituentsB andB'. Dibaryon candidates with quarks heavier tisawe not covered here.

S SU(3) [ J7 BB' structure 0 <Vewm >
0 [33010 0 3F AA 0

-1 [321]8 1/2 2* 1/5 (NZ* + 2 AS) — Mo
-2 [222]11 0 oOf 1/8 (AN\+2N=—/333) —2.40
-3 [321]8 1/2 2" /1/5[V2NQ—(A=*—Z*=+3=%)] — My

Table 1: Leading quark-baseld = 0 dibaryon candidates, adapted from Ref. [2].

Let's comment on the two extreme cases in the tabfe= —2 and.¥ = 0. For.¥ = —2, the
table suggests that the listelddibaryon is deeply bound, located well below fhé& lowest particle-
stability threshold, but in fact SU(Bpreaking effects abort its anticipated stability, as concluded
recently from chiral extrapolations of lattice QCD calculations [3]; see E$dor arguments
based on hypernuclear phenomenology. Ko 0, in contrast, the table suggests no outstanding
nonstrange dibaryon candidate resulting from the quark-based CMdétitar. HoweverNA and
AA swave dibaryon resonancegs with isospinl and spinS were proposed as early as 1964,
when quarks were still perceived as merely mathematical entities, by DysbXwong [5] who
focused on the lowest-dimension SU(6) multiplet in 8&x 56 product that contains the SU(3)
10 and 27 multiplets in which the deuteroto; and NN virtual state ;g are classified. This
yields two dibaryon candidate$1, for NA and Zp3 for AA listed in Table 2 with massdd =
A+B[l (I +1)+S(S+1) — 2] in terms of constant8, B. Identifying A with theNN threshold mass
1878 MeV,B ~ 47 MeV was determined by assignirig , to the pp «+ m"d reaction channels
resonating at 2160 MeV near tiNA threshold. This led to a predicted mass value of 2350 MeV
for Zu3. The 3 dibaryon was the subject of many quark-based model calculations €i86e 1

9s Yoo T Y12 D21 P03 Z%

BB NN NN NA NA AN AN
su@ 10 27 27 35 10 28
M(%Zs A A A+r6B AL6B A+10B A+ 10B

Table 2: SU(6) predictions [5] for nonstrande= 0 dibaryonsZs with isospinl and spinS.

%03 mass predictions are listed in Table 3 for several representative ahpal he table ex-
hibits a broad range of caluclategh; masses. Except for the Dyson-Xuong pioneering prediction
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M(Gev) [5] [6] [7] [8 [0 [10] [11] [12,13] exp.
P03 (0L) 235 236 246 2.38 220<226 246 2.36 2.37[14, 15]
P15 (ND)  2.16% 236 - 236 — - 217 - =~2.15[16,17]

Table 3: Quark-based model predictions @63 and 712, except where denoted by asterisksienotes post-
experimentZps calculation and* denotes input from experiment. Experimental evidenceZigy(2370 is
shown in the figure below. THeA andAA thresholds are at 2.17 and 2.46 GeV, respectively.

[5] none of those confronting/pz and %12 succeeded to correctly reproduce both. Recent experi-
mental evidence fo%ps is displayed in Fig. 1-left. Isospin= 0 is uniquely fixed in this two-pion
production reaction and a spin-parity a8ssignment follows from the measured deuteron and pions
angular distributions, assumirsgvave decayind\A pair. The peak of thmgno distribution on the
right panel at,/s~2.13 GeV, almost at th&i, NA dibaryon peak, suggests thai, plays a role

in forming theAA dibaryon %ps. It is shown below that the pion-assisted methodology applied
by us recently [18, 19] couples the two dibaryons dynamically in a moreadatay than appears

in quark-based models. Our calculations emphasize the long-range 9hgpiects of nonstrange
dibaryons, as described briefly in the next section.
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Figure 1: %2p3(2370 AA dibaryon signal on the left panel, and m%’-no Dalitz-plot projection on the right
panel, frompn— dr°m® by WASA-at-COSY [15]. Figures courtesy of Heinz Clement.

2. Pion-assisted nonstrange dibaryons

2.1 NA dibaryons

The 21, dibaryon shows up experimentally BEN('D,) < md(3P,) coupled-channel reso-
nance corresponding to a quasibolll with massM = 2.15 GeV, near thélA threshold, and
width " ~ 0.12 GeV [16, 17]. In our recent work [19] we have calculated this dibarand other
NA dibaryon candidates such & (see Table 2) by solving Faddeev equations with relativis-
tic kinematics for thertNN three-body system, where thi\N subsystem is dominated by tigs
A(1232) resonance channel and il subsystem is dominated by tA8; and'S, channels. The
coupled Faddeev equations give rise then to an effebifvé.ippmann-Schwinger (LS) equation
for the three-bodys-matrix pole, with energy-dependent kernels that incorporate spetiadioon
propagators, as shown diagrammatically in Fig. 2 where circles denoMAematrix.
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Figure 2: NA dibaryon’s Lippmann-Schwinger equation [19].

Of the four possiblé. = 0 NA dibaryon candidateg)s with IS= 1221 11 22, the latter two
do not provide resonant solutions. F@i», only 3S; contributes out of the twdlN interactions,
while for 2,1 only 1S contributes. Since th&S; interaction is the more attractive on@j, lies
below 2,1 as borne out by the calculated masses listed in Table 4 for two choices &ihe
interaction form factor corresponding to spatial sizes of 1.35 fm andn0.8ffthe A isobar. The
two dibaryons are found to be degenerate to within less than 20 MeV. Trevalaes calculated
for 1, are reasonably close to the vale= 2148—i63 MeV [16] andW = 2144—i55 MeV [17]
derived in coupled-channel phenomenological analyses.

W (Z12) W (Z21)  W<(Z12) W<(Za1)
2147-160 2165164 2159170 2169 169

Table 4: NA dibaryonS-matrix poles (in MeV) forZ1, and %»1, obtained by solvingiNN Faddeev equa-
tions for two choices of theN Ps3 form factor, with large (small) spatial size denoted > (<).

2.2 AA dibaryons
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Figure 3: Smatrix pole equation foZp3(2370) AA dibaryon [18].

Four-body NN calculations are required, strictly speaking, to discdsdibaryons. In
Ref. [18] we studied theZys dibaryon by solving aiNA’ three-body model, whe®' is a stable
A(1232) and thél4' interaction is dominated by th#;, dibaryon. The (J7) = 1(2*) NA' interac-
tion was not assumed to resonate but, rather, it was fitted witNiN-atlNN-NA’ coupled-channel
caricature model to th&IN D, T-matrix,requiring that the resultingA’ separable-interaction
form factor is representative of long-range physics, with momentumesgptt cutoffA <3 fm=1.
The N interaction was again assumed to be dominated byPthé\ resonance. The Faddeev
equations of this three-body model give rise, as before, to an effecBvequation for thaA' S
matrix pole corresponding t@p3. This LS equation is shown diagrammatically in Fig. 3, where
stands for thez;, dibaryon. In Ref. [19] we have extended the calculatio®gf to otherZ,s AA
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dibaryon candidates, with now standing for botNA dibaryons?;, and%»;. Since%,1 is almost
degenerate witl%;,, and with noNN observables to constrain the inguitS)=(2,1) NA" interac-
tion, the latter was taken the same as(fo5)=(1,2). The model dependence of this assumption is
under study at present. The lowest and also narraéstibaryons found ar&/y3 and Zso.

W(A) W~ (Zo3) W7 (Z30) W<(Zoz) W<(Z30) War(Zo3) Wav(Z30)
1211-i49.5 2383-i47 2412-i49 2342-i31 2370-i30 2363-i39 2391-i39
1211-i(2/3)49.5 238341 2411-i41 2343-i24 2370-i22 2363-i33 2390-i32

Table 5: AA dibaryonS-matrix poles (in MeV) obtained in Refs. [18, 19] by using @sjatorA’ complex
massW (4A') (first column) in the propagator of the LS equation depicteldlig. 3. The last two columns give
calculated mass and width values averaged over those femdnd < columns, where > and < are defined
in the caption of Table 4.

Representative results f&yz and Z3g are assembled in Table 5, where the calculated mass
and width values listed in each row correspond to the value listed there qf¢b&agorA’ complex
massW(A') used in the propagator of the LS equation shown in Fig. 3. The vali#(Af) in
the first row is that of thé\(1232) Smatrix pole. It is implicitly assumed thereby that the decay
A — Nmproceeds independently of the— Nrtisobar decay. However, as pointed out in Ref. [18],
care must be exercised to ensure that the decay nucleons and pidiysFsatis-Dirac and Bose-
Einstein statistics requirements, respectively. Assurhiag) for the decay-nucleon pair, this leads
to the suppression factor 2/3 depicted in the valu&/@l’) listed in the second row. It is seen that
the widths obtained upon applying this width-suppression are only modesatelier, by less than
15 MeV, than those calculating disregarding this quantum-statistics correlation

The mass and width values calculated fag; [18] agree very well with those determined
by the WASA-at-COSY Collaboration [15], reproducing in particular theoréed width value
I (Z03) = 68 MeV which is extremely low with respect to the expectation< I'(Zp3) < 2l ,,
with T'a ~ 118 MeV. No other calculation has succeeded so far to do that. Similar smalfiswid
according to Table 5 hold fa#3g which is located about 30 MeV aboveys. This is about half of
the spacing found very recently in the quark-based calculations of B3f. Note, however, that
the widths calculated there are considerably larger than ours. A more derdgeussion of these
and of otherZ,s AA dibaryon candidates is found in Ref. [19].

3. Conclusion

It was shown how the 1964 Dyson-Xuong SU(6)-based classificatidrpeedictions of non-
strange dibaryons [5] are confirmed in our hadronic model of pioistasNA andAA dibaryons
[18, 19]. The input for dibaryon calculations in this model consists ofeurts, pions and’s,
interacting via long-range pairwise interactions. These calculationsdepedhe two nonstrange
dibaryons established experimentally and phenomenologically so fé/tkdéaryonZ,, [16, 17]
and theAA dibaryon%ps reported by the WASA-at-COSY Collaboration [15], and also predict an
exoticl = 2 NA dibaryon%,1 nearly degenerate wittv;». We note thatZ;, provides in ourriNA
three-body model 0#y3 a two-body decay chann&l?;, with threshold lower thadA. Our cal-
culations are capable of dealing with otk dibaryon candidates, in particular the- 3 exotic
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P10 highlighted recently by Bashkanov, Brodsky and Clement [20]. The8®e emphasized the
dominant role that 6q hidden-color configurations might play in bindiag and %30, but recent
explicit quark-based calculations [13] find these configurations to plenaginal role, enhanc-
ing dibaryon binding by merely 155 MeV. Hidden-color considerations are of course outside the
scope of hadronic models and it is gratifying that the results presentedrhtte hadronic basis
are independent of such poorly understood configurations.
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