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K̄N-πY system is a key ingredient for the study of exoticK̄-nuclear system which has been dis-
cussed for a long time. In this article, we have studied theK̄N-πY system with a coupled-channel
Complex Scaling Method (ccCSM). The ccCSM is expected to deal appropriately with important
points in the study of̄K-nuclear system: 1. coupled-channel problem and 2. resonant states. Here,
we report the result of the first application of the ccCSM to theK̄N-πY system, in which we have
treated resonance and scattering problems in a single framework of the ccCSM with Gaussian
base.
We have proposed a chiral SU(3)-basedK̄N-πY potential with a Gaussian form in r-space for both
isospin 0 and 1 sectors, constrained by theK̄N scattering length. Using this potential, we have cal-
culated theI = 0 scattering amplitudes with the ccCSM and then confirmed a resonance structure.
A resonance pole is found around(1418,−21) MeV ((1420,−25) MeV) on the complex-energy
plane for non-relativistic (semi-relativistic) kinematics. The meson-baryon mean distance of the
resonance is found to be 1.3−0.3i (1.2−0.5i) fm. Furthermore, using the complex-range Gaus-
sian function as a basis function, we have found another pole in the lower-energy region involving
large decay width. These resonances are considered to form the double pole ofΛ(1405) as re-
ported in past studies with chiral unitary model. Similarly, we have investigated theI = 1 sector
in which three channels of̄KN, πΣ andπΛ are taken into account.
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In strange nuclear physics and hadron physics, nuclear system with anti-kaon (K̄=K−, K̄0) has
been an interesting topic. Because of the strong attraction between anti-kaon and nucleon, kaonic
nuclei are expected to have exotic nature such as formation of dense nuclear state [1, 2]. To clarify
the detailed property of such thepossibleexotic system, many studies are devoted to the three-body
system composed of two nucleons and an anti-kaon,K−pp, which could be a prototype of kaonic
nuclei. In spite of many studies from both theoretical and experimental sides, the conclusive result
of K−pphas not been achieved yet. However, all theoretical studies suggest thatK−ppshould exist
as a resonant state betweenK̄NN andπΣN thresholds [3]. Considering such a current situation of
theK−ppstudy, we have started the investigation of kaonic nuclei with a coupled-channel Complex
Scaling Method (ccCSM). The ccCSM can correctly deal with the important ingredients in the
study of kaonic nuclei; 1. channel coupling of̄KN andπY, and 2. resonant states. As for the
second point, CSM has been successfully applied in the field of unstable nuclei [4]. In this work,
we have applied the ccCSM to the two-body system ofK̄N-πY coupled system. The content of this
article is essentially based on our work [5].

We give a brief comment on the ccCSM. In our study, both of resonance and scattering prob-
lems are dealt with a single framework of ccCSM and are solved with Gaussian basis which is
easy to handle. In the ccCSM, we perform a complex scaling in Hamiltonian and wave function;
rrr → rrreiθ and ppp → pppe−iθ . This transformation changes divergent (oscillating) behavior of reso-
nance wave function (scattered part of wave function in a scattering wave) to a damping form. It
is a key point that a non-square integrable function is transformed to be square integrable. Since
the complex-scaled wave functions are square integrable, we can expand them with Gaussian base.
Consequently, resonance and scattering problems are reduced to a complex-eigenvalue problem
and linear-equation problem, respectively.

We investigateK̄N andπΣ scattering amplitudes in theI = 0 channel by using the ccCSM. At
first, calculating the scattering length, we determine parameters of ourK̄N-πY coupled potential
which is based on the chiral SU(3) theory and has a local Gaussian form in the coordinate space.
The range parameters of Gaussian functions are fixed so as to reproduce theK̄N scattering length
obtained by Martin’s analysis [6]. Fig. 1 shows the scattering amplitudes calculated with non-
relativistic versions of the potential. A resonance structure appears at∼ 1410 MeV in theK̄N
scattering amplitude, which corresponds to the hyperon resonanceΛ(1405). We make a calculation
also in semi-relativistic kinematics. The amplitudes are qualitatively the same as those of non-
relativistic kinematics. As a result that we search for a resonance pole in theI = 0 channel by using
the ccCSM, the pole is found on complex-energy plane around(M,−Γ/2) = (1418,−21) MeV

Table 1: Essence of the complex scaling method for resonance problem and scattering problem. “wfnc.” is
the abbreviation of “wave function”.

For resonances For scattering problem

Role of complex rotation Resonance wfnc.: Scattered part wfnc.:
divergent→ damping oscillating→ damping

Additional help “ABC theorem” [4] “Cauchy’s theorem”
Resonance pole Scattering amplitude
... independent ofθ ... from the wfnc. onreiθ axis
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Figure 1: I = 0 scattering amplitudes calculated with coupled-channel Complex Scaling Method using non-
relativistic potentials (NRv1, 2 withfπ = 110 MeV). The real (imaginary) part of scattering amplitude is
drawn with a black-solid (red-dashed) line. Left (right) panel showsK̄N (πΣ) scattering amplitude. Vertical
dashed line means thēKN threshold.

((1420,−25) MeV) in non-relativistic (semi-relativistic) case. It is an advantage of the ccCSM that
we can obtain an explicit wave function of resonant state. We calculate the mean distance between
meson and baryon which compose the resonant state, by using the complex-scaled wave function.
The mean distance is found to be 1.3− 0.3i (1.2− 0.5i) fm in non-relativistic (semi-relativistic)
case. Interestingly, these values are quite close to the mean distance which is deduced from the
electro-magnetic form factor ofΛ(1405) investigated with a chiral unitary model, as Sekihara
pointed out in his talk [7].

Here, we mention to the double-pole structure ofΛ(1405). According to former studies with
chiral unitary model [8, 9], it is pointed out that there are two poles in theI = 0 channel ofK̄N-πΣ
system. One pole (called higher pole) gives a shallowK̄N binding with narrow width, whereas
the other one (called lower pole) gives a deepK̄N binding with broad width. Since our potential
is also based on chiral SU(3) theory, such the double-pole structure is expected. Then, we have a
question, “Where is the other pole? ”. It is generally difficult to apply the basis expansion method
to describing the resonances with broad decay widths, even if with the complex scaling method.
In particular, the continuum state, whose wave function oscillates originally, can’t be correctly
described with the Gaussian base, As a result of limitation of the description of the continuum
states, it becomes difficult to separate broad resonant states from continuum states. Recently, a
method to overcome this difficulty has been proposed by Kamimuraet al. [10]. Following their
idea, we use Gaussian functions withcomplexrange parameters as base functions:

G(±)
n (r) = N(±)

n r l exp[−(an± iω) r2], (1)

whereN(±)
n means a normalization factor,{an} is a real range parameter, and±iω is introduced

to make the range parameters complex values. Taking the linear combination ofG(±)
n (r), it is eas-

ily found that the complex-range Gaussian involves trigonometric functions;G(+)
n (r) + G(−)

n (r) ∝
r l exp[−an r2] cosωr2 andG(+)

n (r) − G(−)
n (r) ∝ r l exp[−an r2] sinωr2. Owing to the oscillatory

behavior of the trigonometric functions, wave functions of continuum states are described better,
compared to the usual calculation with the real-range Gaussian base. Consequently, the energy
eigenvalues of continuum states appear more clearly along the 2θ line on the complex energy
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Table 2: Complex energies(M,−Γ/2) of lower and higher poles for eachfπ value. The scaling angle for the
lower pole and higher pole is taken toθ = 40◦ and 30◦, respectively. The lower pole is calculated with the
complex-range Gaussian basis (ω = 2.0 [fm−2]), whereas the higher pole is calculated with the real-range
Gaussian basis. The potential NRv2 is used. All values are given in unit of MeV.

fπ 90 100 110 120

Lower pole M ∼1350 1368.8 1395.2 1424.7
−Γ/2 ∼ −66 −109.1 −137.8 −163.2

Higher pole M 1419.7 1418.3 1417.5 1418.7
−Γ/2 −23.3 −19.8 −16.4 −14.6

Table 3: I = 1 scattering length. In the column “Condition”, “Re fitted” (“Im fitted”) indicates that the
parameters are tuned to reproduce the real (imaginary) part of the Martin’s value. All values are given in
unit of fm. “SR-A” means a semi-relativistic potential.

Potential NRv2 SR-A Martin [6]
Condition Re fitted Im fitted Re fitted Im fitted

ReaKN(I=1) 0.372 0.657 0.371 0.659 0.37
Im aKN(I=1) 1.504 0.599 1.493 0.600 0.60

plane (indicating the line of tan−1(ImE/ReE) = −2θ ), and then we can distinguish resonance
poles from continuum states, even if resonances have a broad width. Certainly, the poles found
newly involve large decay width as summarized in Table2. They correspond to the lower pole of
the double pole, and the poles which have already found should be the higher pole. As shown in the
table, the higher-pole position is well determined independently of thefπ value which is a param-
eter in our potential, whereas the lower-pole position depends strongly onfπ value. We consider
the reason of this result as follows: As mentioned before, our potential is constrained by theK̄N
scattering length. Therefore, the higher pole is much affected by this constraint because it appears
near theK̄N threshold. On the other hand, the lower-pole nature can’t be well constrained by our
potential because they are far from thēKN threshold. Anyway, thus, the double-pole structure is
quite well confirmed in our chiral SU(3)-based potentials by means of the ccCSM.

The same analysis is performed in theI = 1 sector which involves three channels ofK̄N, πΣ
andπΛ. In this case, there are too many range parameters in the potential, compared to the num-
ber of constraint condition; the complex-valued̄KN scattering length inI = 1 channel,aKN(I=1).
Therefore, we determine some of range parameters in an iso-symmetric way; the range parameters
determined in theI = 0 sector are used also in theI = 1 sector. With the iso-symmetric choice,
only a range parameter,dKN,πΛ, remains unknown. Searching fordKN,πΛ, we can’t find such the
parameter that satisfies the complex-valuedaKN(I=1). We examined to finddKN,πΛ which repro-
duces either real or imaginary part ofaKN(I=1). It is found that ImaKN(I=1) deviates largely from
the Martin’s value when ReaKN(I=1) is reproduced. On the other hand, when ImaKN(I=1) is re-
produced, the deviation of ReaKN(I=1) from the Martin’s value is rather small. (Table3) When
we remove the restriction of the iso-symmetric choice, we can find some parameter sets which
reproduce completely the Martin’s value. However, the scattering amplitudes calculated with such
range parameters show strange behavior as depicted in Fig.2: In a non-relativistic case, there is a
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Figure 2: I = 1 scattering amplitudes when the complex value of Martin’s scattering length is reproduced.
(Read the text.) Left and right panels areK̄N scattering amplitude obtained with NRv2 potential andπΣ one
obtained with SR-A potential, respectively.

resonant state slightly below theπΣ threshold, although such a resonance is not found experimen-
tally and is not predicted by other theoretical studies. In a semi-relativistic case, theπΣ scattering
amplitude indicates a repulsive nature in spite of attractiveπΣ-πΣ potential.

By the present study, it is confirmed that the coupled-channel Complex Scaling Method is a
powerful tool to investigate resonant states of hadronic systems as well as nuclear system. As a
merit of the complex scaling method, it is easily applied to many-body systems. In future we will
study various kinds of hadronic many-body systems with the ccCSM, since the channel coupling
is in general important there. As the first priority we investigate theK−ppsystem which motivated
us originally, because the final result of new data onK−pp will soon be reported by J-PARC
experimental groups [11].
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