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Recently a new three-dimensional (3D) formulation for scattering of two spin-half particles, either
identical or unidentical, is presented. In the formulation the free linear-momentum states are not
expanded into the angular-momentum states and the system’s spin and isospin states, respectively,
are described by the product of the spin and isospin states of the two particles. We apply this
technique to calculate nucleon-nucleon (NN) scattering. But as NN interaction models are usually
being parametrized regarding to the NN total isospin, we take the total isospin state, instead of
the product of the isospin states of the two nucleons, as part of the 3D basis state. We evaluate
the Lippmann-Schwinger equations for NN T-matrix elements in these 3D basis states and end up
with a set of coupled integral equations for the NN T-matrix elements in two variables, namely the
magnitude of the relative momentum and the scattering angle. We show as an example the spin-
averaged differential cross section, which can be calculated directly from the solution of the set
of the integral equations. The recently developed 3D formulation also introduces a set of six spin
operators to express any interaction of two spin-half particles. We show the Bonn NN potential

in terms of these six spin operators.
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1. Introduction

The fact that nucleon-nucleon (NN) interaction is of short-range interaction allows one to
analyze NN scattering by considering only a number of lowest angular-momentum states or partial
waves. But as the energy at which the scattering occurs increases many more higher partial waves
are needed[1, 2]. For energies up to a few hundreds MeV one faces no significant difficulties
to perform well-converging partial-wave (PW) calculations for NN scattering, but not for three-
nucleon (3N) scattering[3].

There are some works to formulate and calculate NN and 3N scattering in three dimensions
without PW decomposition, see, for example, Refs. [1]-[7], and they give good results. Here
we develope a new three-dimensional (3D) formulation for NN scattering, which is based on our
previous work in Ref. [8]. Although 3D calculations are required more for 3N scattering, we start
from NN scattering, since the NN T-matrix elements are input to calculations of 3N scattering.

2. NN scattering in new three-dimensional formulation

Let us take a NN observable, for example the spin-averaged differential cross section:
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Here 7% = (1 — P12) T is the antisymmetrized NN T-matrix, P, a permutation operator, p the rela-
7L,~> (i =1,2) the spin state of the ith nucleon, with the spin being quantized along
the z axis, T and v respectively the NN total isospin quantum number and the quantum number
for the z-component of the NN total isospin, ( the reduction mass, and C(%%T; Vi vzv) Clebsch-
Gordan coefficients. So, to calculate observables one needs < pP'A{ AZ’TV‘T“ ’p/h lzrv>. Hence, in

tive momentum,

our 3D formulation we derive the Lippmann-Schwinger (LS) equation for the T-matrix elements
{pp'M A} TV}T“ ‘p)tllzrv>. This means we take the state given in Eq. (2.2) as basis state.
Different from the 3D basis state in Ref. [8], here we take the NN total isospin state ‘TV>
instead of the product of the isospin states of the two nucleons |v; > ]v2>. We do this, since models
of NN potential are usually parametrized with respect to the total isospin of the NN system.
We evaluate in the 3D basis states ‘p),llzrv> the following LS equation for the antisym-
metrized T-matrix 7%, with V¢ = (1 — Pjp) V:

T =V*4+VGyT“. (2.3)

We obtain
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with G§ (p?) = lime_yo
ments) being defined as

ﬁ and the potential matrix elements (similarly the T-matrix ele-

Viduna @) = (P A ATV |V [pAidzTy) 2.5)
V/{’,ZA 2 @P) = (P A ATV Ve pridaTy). (2.6)

As for p = Z the azimuthal dependency of the potential matrix elements (and similarly of the T-
matrix elements) shows up as a phase factor as
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the LS equatlon for T )2/1 R (p/,p) given in Eq. (2.4) finally reduces to the following integral
equation for 7} 12/1 P (p',p,0):
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For a system of two spin-half particles it is known that symmetry behaviour of the T-matrix
elements reduces the number of T-matrix elements to be taken, with respect to various initial and
final spin states, from 16 to 6. We get this symmetry behaviour for T”{ZM R (p/,p,0) as
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Therefore, instead of 4 sets of 4 coupled equations for T k 12 s (p',p,0’) given in Eq. (2.9), we
need to solve only 2 sets of 3 coupled equations. One set is for 77", (p',p,0'), T\"" |, (P, p,0"),
2
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Thus, as an example, the proton-proton spin-averaged differential cross section can be calculated
. a,Tv s
from the 6 T-matrix elements of the type 7. PR (p', p,0’) mentioned above as

do 1
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p 2 7322 27222
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3. Spin operators for any NN interaction model

A set of six spin operators is defined in Ref. [8] to describe any interaction between not only
NN but any two spin-half particles. These spin operators are

P (p',p) =1 Py (p',p) = (01-p) (02-D)
Py (p',p)=01-02 Ps(p'.p) = (o1-p')(o1-p) + (02-p') (02 D) (3.1
Pi(p . p)=(o1-9)(02:0) P(.p)=(01-9)(02:D)+ (01-D) (02 D)

Thus, we express any NN potential in terms of these six operators P; (p’,p) as

6
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=
with £ (p, p,p’- p) being some spin-independent functions.

Let us take a look at, for example, the Bonn realistic NN potential[9]. Some of the spin
operators of the Bonn potential are already some of those operators P; (p’,p). There are four spin
operators of the Bonn potential, which are not one of the operators P; (p’, p), but these four operators
can be writen in terms of the operators P; (p,p) as shown in the following, with y = p’ - p:

G1-0201-po2-p=p° {Pi (p',p) — P2 (') + P (p'.D) } (3.3)
c1-p'oa-p'or-oa=p” {P (p',p) — P> (p'.p) + P (B'.D) } (34)
01-p'02-p'01-poy-p= p’zpz[ Y'Pi(p',p) —(1—7Y)P2 (p',D) +Ps (D, D)
+P: (BB) +7{Ps (BB) — P (9B)}] 3.5
01-p'01-0202-p+02-p'01- 0201 -p=p'p [—2Y{P1 (0',p) — P (p',D) }
—Ps (p',p) +2Ps (B',p)| - (3.6)
The spin matrix elements P(?AQ/ PR (p'.p) = <z?L <i).2’ p.p) ‘zll > ‘z)Lz> result as

Pﬁ;ﬁl 2, (B P) =672, 6341, (3.7)
Pﬁ;ﬁmz (B’ p) = 0x2, (5/1;/155%/12 - 5/1;7—/155;L],—/12) +26, 2,00, - 1,00 -1 (3.8)

P (D)= (5,1; n2hicos0' + 8y 3, M sin 9’)
X (6;%2212 cos '+ 512’,7126’2%” sin 0’) (3.9)
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5 Al A _2i I_ . .
P7(t{/)12’/117tz (p',p)= 512/,12 [5,11/,11 {cos 0’ cos 0 + e 29 =0) gin 9’51n9}
+631, - 20,3 M9' {sin 0 cos B — e M9 9) cos 6’ sin O }]

+8u, [5;%2 {cos 0'cos @ + e 2%2(9"~9) gin 0’ sin 9}



NN scattering formulations without partial-wave decomposition Imam Fachruddin

+5;L£,_/1222262’%2¢l {sin 0’ cos  — e 242099 ¢o5 0/ sin 6 }] (3.11)

6 N e
Pi(t’/)lzlllz (p',p)= (5/1{/11 2A1cos 0 + 3%_,11 M9 sin 9/>
X (532%2212 cos 0 + 832/,_,12e2"’12¢ sin 6)
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X (5%122/12 cos O’ + 5;12’,71262’%2‘1’/ sin 0’) . (3.12)

Due to the Kronecker delta’s in Egs. (3.7) - (3.12) many of the spin matrix elements Pi e (p',

vanish. In the following we show some of the nonvanishing ones, with A = i%:
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4. Summary

Three-dimensional calculations are shown to be necessary or even required, especially for NN
and 3N scattering at higher energies of a few hundreds MeV. As NN T-matrix elements are input
to 3N scattering calculations, we develope a new 3D formulation starting with NN scattering. We
derive integral equations for NN T-matrix elements in new 3D basis. The final integral equations
consist of 2 sets of 3 coupled equations for the T-matrix elements in two variables, i.e. the mag-
nitude of the relative momentum and the scattering angle. The solution of these equations can be
used directly to calculate observables of NN scattering. This is shown, as an example, for the spin-
averaged differential cross section. We evaluate matrix elements of six spin operators, in terms of
which any NN potential can be discribed, as an example, the Bonn potential.
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