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We overview the recently achieved complete decomposition of the nucleon spin. This is the gauge
invariant completion of the Jaffe–Manohar sum rule, and involves twist–three GPDs. Its precise
relation to the Ji sum rule is clarified.
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1. Introduction

The facts that the nucleon has spin one–half and that it is not an elementary particle open up
a fundamental research field examining how the total nucleon spin is accounted for by quarks’ and
gluons’ degrees of freedom. In recent years there has been renewed interest in this old problem
which has resulted in important new findings. The purpose of this talk is to briefly overview these
developments, but before doing so, let me first review the status before 2008. Two decomposition
schemes, each of which has its own pros and cons, have been known for a long time:

1. Jaffe–Manohar sum rule [1]

1
2
=

1
2

∆Σ+∆G+Lq
can +Lg

can . (1.1)

This is based on the decomposition of the canonical energy/angular momentum tensor in
QCD. It is a complete decomposition in the sense that the right hand side contains four terms
corresponding to the spin and the orbital angular momentum (OAM) of quarks and gluons.
However, it is not a gauge invariant decomposition (excepting the quark spin ∆Σ). The default
gauge is the light–cone gauge which allows a partonic interpretation for each component.

2. Ji sum rule [2]

Jq =
1
2

∫ 1

−1
dxx(Hq(x)+Eq(x)) , Jg =

1
4

∫ 1

−1
dx(Hg(x)+Eg(x)) . (1.2)

This relates the quark/gluon contribution (Jq + Jg = 1
2 ) to the quark/gluon twist–two gen-

eralized parton distributions (GPDs). It is based on the so–called improved energy/angular
momentum tensor of QCD, and as such, all the operators involved are local and gauge invari-
ant. Their matrix elements (i.e., GPDs) are measurable experimentally from deeply–virtual
Compton scattering (DVCS). Jq (but not Jg) can be further decomposed, gauge invariantly,
into the spin and the OAM parts: Jq = 1

2 ∆Σ+Lq. This kinetic OAM Lq is different from the
canonical OAM Lq

can in (1.1), and does not satisfy the commutation relation [~Lq×~Lq] 6= i~Lq.

There have been enormous experimental effort to independently measure ∆G and GPDs. How-
ever, it is not clear how to combine the outcomes of these measurements because they are moti-
vated by different decomposition schemes, and no one knew the precise relation between the two
schemes.

2. Complete gauge invariant decomposition

In 2008, Chen et al. suggested a new approach towards achieving a complete, gauge invariant
decomposition scheme [3] (see also, [4]). This has triggered a great deal of debate and confusion
among experts. After the dust has settled, the following decomposition has emerged

Mµνλ

quark-spin = −1
2

ε
µνλσ

ψ̄γ5γσ ψ , Mµνλ

quark-orbit = ψ̄γ
µ(xν iDλ

pure− xλ iDν
pure)ψ , (2.1)

Mµνλ

gluon-spin = Fµλ
a Aνa

phys−Fµν
a Aλa

phys , Mµνλ

gluon-orbit =−Fµα
a
(
xν(Dλ

pureAphys
α )a− xλ (Dν

pureAphys
α )a

)
.
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where [5]

Aphys ≡
1

D+
F+µ , Dµ

pure ≡ Dµ − igAµ

phys . (2.2)

(2.1) is written in terms of the angular momentum tensor, and can be recast in a similar form as
in (1.1) after taking the matrix element 〈PS|M+i j|PS〉. The result is essentially the gauge invariant
completion of the Jaffe–Manohar scheme (1.1). (It reduces to Jaffe–Manohar in the light–cone
gauge A+ = 0.) The gluon spin part agrees with ∆G, and moreover it provides the precise gauge
invariant definitions of the quark and gluon canonical OAMs Lq,g

can.

3. Orbital angular momentum

By definition, the canonical OAM Lq
can satisfies the commutation relation while the kinetic

OAM Lq does not. One way to characterize the two types of OAMs is through the Wigner distribu-
tion

W [x,q] =
∫ d4z

(2π)4 eik·z
ψ̄(x− z

2
)W ψ(x+

z
2
) . (3.1)

Since the Wigner distribution contains information of both position x and momentum q, it is natural
to define an OAM by forming the cross product~x×~q and averaging it with the weight (3.1). This
was first considered in [6], but the Wilson line W , which renders the nonlocal operator in (3.1)
gauge invariant, was neglected. It turns out that the nature of the resulting OAM does depend on
the choice of the Wilson. If one uses a Wilson line which goes to light–cone infinity (x−=±∞) and
then comes back, one gets the canonical OAM Lq

can [7]. However, if one uses the straight Wilson
line (from x− z/2 to x+ z/2), one rather gets the kinetic OAM Lq [8].

4. Twist analysis

Now we come to the relation between the complete decomposition and the Ji decomposition

Jq =
1
2

∆Σ+Lq
can +Lpot , Jg +Lpot = ∆G+Lg

can , (4.1)

where Lq−Lq
can ≡ Lpot is called the potential angular momentum. Remarkably, these relations can

be understood at the density level [9]. Indeed, it is possible to uniquely (in a certain sense) define
the density of the canonical OAM Lq,g

can =
∫

dxLq,g
can(x). This allows us to analyze the twist structure

of the complete decomposition, and in particular, its relevance to twist–three GPDs.
For this purpose, we define the following twist–three quark–gluon correlator∫ dy−dz−

(2π)2 e
i
2 (x1+x2)P̄+z−+i(x2−x1)P̄+y−〈P′S′|ψ̄(−z−/2)γ+W−z

2 y gFµν(y−)Wy z
2
ψ(z−/2)|PS〉

=
1

P̄+
ε

µνρσ S̄ρ∆σ ΦF(x1,x2)+ · · · . (4.2)

This is similar to the matrix element that generates the (transverse) single–spin asymmetry, but here
it is a nonforward matrix element (∆ = P′−P) and we have in mind the longitudinal polarization.
It is easy to show that [7]

Lpot =
∫

dx1dx2P
ΦF(x1,x2)

x1− x2
. (4.3)
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In addition to the ‘F–type’ correlator (4.2), let us similarly define the ‘D–type’ correlators

F.T.〈P′S′|ψ̄γ
+F+i

ψ|PS〉 ∼ ΦF(x1,x2) ,

F.T.〈P′S′|ψ̄γ
+

γ5F+i
ψ|PS〉 ∼ Φ̃F(x1,x2) ,

F.T.〈P′S′|ψ̄γ
+Di

ψ|PS〉 ∼ ΦD(x1,x2) ,

F.T.〈P′S′|ψ̄γ
+

γ5Di
ψ|PS〉 ∼ Φ̃D(x1,x2) , (4.4)

It is known that generally these two types of correlators are related [10]. In the present case,
the relation reads

ΦD(x1,x2) = δ (x1− x2)Lq
can(x1)+P

1
x1− x2

ΦF(x1,x2) , (4.5)

which is the doubly–unintegrated version of Lq = Lq
can+Lpot (cf. (4.3)). Eq. (4.5) naturally defines

the canonical OAM density Lq
can =

∫
dxLq

can(x). The delta function δ (x1− x2) ensures that, in the
quark–gluon–quark system described by the operator ψ̄γDψ , the gluon carries zero longitudinal
momentum x2− x1 = 0. Thus the variable x in Lq

can(x) is indeed the longitudinal momentum frac-
tion assigned to the quark, which makes its density interpretation possible. In contrast, there is
ambiguity in defining a ‘density of the kinetic OAM’ Lq =

∫
dxLq(x). For instance, one can define

either Lq(x) =
∫

dx′ΦD(x,x′) or Lq(x) =
∫

dx′ΦD(x+ x′/2,x− x′/2).
The operator representation of Lq

can(x) is rather complicated, but owing to the equation of
motion it can be written as [9]

Lq
can(x) = x(Hq(x)+Eq(x)+G3(x))−∆q(x)

−
∫

dx′P
1

x− x′

(
ΦF(x,x′)+ Φ̃F(x,x′)

)
, (4.6)

where ∆q is the usual polarized quark distribution and G3(x) is one of the twist–three GPDs defined
as

F.T.〈P′S′|ψ̄(−z/2)γ i
⊥ψ(z/2)|PS〉= G3(x)ū(P′S′)γ i

⊥u(PS)+ · · · . (4.7)

Integrating (4.6) over x, we get ∫
dxxG3(x) =−Lq . (4.8)

This identity was first derived in Ref. [11]. However, there the authors worked in the parton model
where there is no distinction between Lq and Lq

can. We see that (4.8) is valid in full QCD as well.
(4.6) and (4.8) show that, while the integral of G3 is related to the kinetic OAM, G3(x) itself is
rather related to the canonical OAM density.

Furthermore, G3(x) can be eliminated from (4.6) due again to the equation of motion. The
result is

Lq
can(x) = x

∫
ε(x)

x

dx′

x′
(Hq(x′)+Eq(x′))− x

∫
ε(x)

x

dx′

x′2
∆q(x′)

−x
∫

ε(x)

x
dx1

∫ 1

−1
dx2ΦF(x1,x2)P

3x1− x2

x2
1(x1− x2)2

−x
∫

ε(x)

x
dx1

∫ 1

−1
dx2Φ̃F(x1,x2)P

1
x2

1(x1− x2)
. (4.9)

4



P
o
S
(
H
a
d
r
o
n
 
2
0
1
3
)
1
5
0

P
o
S
(
H
a
d
r
o
n
 
2
0
1
3
)
1
5
0

Complete gauge invariant decomposition Yoshitaka Hatta

Eq. (4.9) completely reveals the twist structure of Lq
can(x). It can be decomposed into the ‘Wandzura–

Wilczek’ (WW) part which is related to the twist–two GPDs, and the ‘genuine twist–three’ part
(quark–gluon correlators). Taking the first moment of (4.9), we get

Lcan = Jq− 1
2

∆Σ−Lpot , (4.10)

which is precisely (4.1).
Similarly, we can define the canonical gluon OAM density Lg

can(x) and analyze its twist struc-
ture. Again, the definition is unique in the sense that x is interpretable as the longitudinal momen-
tum fraction of the outgoing gluon. As in (4.6), the density is related to one of the twist–three
gluon GPDs. By eliminating the twist–three GPD using the equation of motion, we get the decom-
position of Lg

can(x) into the WW part related to the twist–two gluon GPDs and genuine twist–three,
three–gluon distributions. Its first moment of course coincides with (4.1).

In conclusion, we now have the complete gauge invariant decomposition of the nucleon spin
even at the density level. It is the twist–three decomposition as compared to Ji’s twist–two decom-
position, and the relation between the two has been fully clarified.
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