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We summarize main points of our recent work where we studied the pion condensation for non-
zero isospin chemical potential within a holographic QCD model. We confirmed that the second
order phase transition with the mean field exponent occurs when the isospin chemical potential
L exceed the pion mass, which is consistent with the result obtained by the chiral effective La-
grangian aD(p?). We find that a deviation for large region can be understood as a higher order
effects in the chiral effective Lagrangian. Our result shows that the chiral condensate defined by
6 = /(0)2+ (m®)2 is almost constant in the smalj region, while it grows withy, in the large

L region showing an enhancement of the chiral symmetry breaking.
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1. Introduction

In this write-up, we summarize main points of the analysis done in Bgfwhere we studied
the pion condensation phase at finite chemical potential using a holographic QCD Ejodel [

Studying QCD at finite isospin chemical potential will give a clue to understand the symmetry
energy which is important to describe the equation of state inside neutron stars. In addition, it may
give some informations on the chiral symmetry structure of QCD. When we turn on the isospin
chemical potentialy at zero baryon number density, the pion condensation is expected to occur
at a critical point. It was showrf§ showed that, by using the chiral LagrangianCiip?), the
second order phase transition to the pion condensation phase occurs and the critical yglue of
is equal to the pion mass. There are so many works on the pion condensation at finite isospin
chemical potential, there are not many works for studying the strength of the chiral symmetry
breaking. Namely, it is interesting to ask whether or not the chiral symmetry is partially restored in
the isospin matter.

In Ref. [, we study the pion condensation phase in a holographic QCD nigey [intro-
ducing the mean fields famr, o and the time component @gf meson. Our results show that the
phase transition is of the second order consistently with the one obtained @{phgchiral La-
grangianf@. It is remarkable that the chiral condensate definedky /(0)2 + ()2 is almost
constant in the small; region, while it grows withy; in the largey; region. This implies that the
chiral symmetry breaking is enhanced by the existence of the isospin chemical potential.

2. Model

In the present analysis we use the hard-wall holographic QCD model given ifdReTHe
action is given by

Zm
%:/d“x/ dz,/gTr [|DX|2+3]X|2—4;2(FL2+FF§) + 780 (2.1)
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where the metric isls* = a?(z) (v dx!dx’ —dZ) with a(z) = 1/z and the fifth directiorz has
the UV and the IR cutoffs¢ and z,,. This theory has the chiral symmetry UJ{Z U(2)r, and
that is consisted by a scalar fiekl and the gauge fields corresponding to the chiral symmetry
U(2)L xU(2)r The action contains the IR boundary ter#fi2P and the profile ofZEP is the ¢
fourth type of theX field which has two parameteAsandn?. In the following analysis we adopt
theLs = Rs = 0 gauge, and use the IR-boundary condifig;, = Fe, |2, = 0.

In the vacuum the chiral symmetry is spontaneously broken down(2p,\by the vacuum
expectation value oK. This is given by solving equation of motion and the solution ofXhieas
two parameteray, anda, wheremy corresponds to the current quark mass artd the quark con-
densatel]. They are related with andn? by the IR-boundary condition of thé. A parameteg?2
is determined by matching with QCD g&= % The pion is described as a linear combination of
the lowest eigenstate a@f* and the longitudinal mode @}, and thep meson is the lowest eigen-
state ofV,,. The values of theny andz, together with that of the relation between these parameters
A andn are fixed by fitting them to the pion masg, = 139.6 MeV, thep meson massy, = 7758
MeV and the pion decay constafit = 924 MeV: my = 2.29MeV ,z, = 1/(323MeV) . In the
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present analysis, we use thg meson massn,, = 980 MeV as a reference value, which fixes
m? = 5.39 and\ = 4.4, and see the dependence of our results on the scalar meson mass.

3. Pion condensation phase

In this section we study the pion condensation for finite isospin chemical potgniialthe
holographic QCD model introduced in sect@n

The isospin chemical potentig| is introduced as a UV-boundary value of the time component
of the gauge field of SU(Z)symmetry as

VE@)e=m . (3.1)

where the superscript 3 indicates the third component of the isospin corresponding to themeutral
meson. Here we study the pion condensation phase for gim#ien we assume that the rotational
symmetry O(3) is not broken by e.g. tpemeson condensatidn:= R, = 0. We also assume the
time-independent condensate, then the vacuum structure is determined by studying the mean fields
of five-dimensional fields which do not depend on the four-dimensional coordinate. Furtheremore,
we also take the mean fields for the neutral pion, the iso-triplet scalar magome6on) and the
iso-singlet pseudoscalar mesanroeson) to be zero in the pion condensation phase .

We show the resultant relation betwegnand the isospin density in Fi@lfor A = 1, 44 and
100 corresponding toy,, = 610MeV, 980MeV and 1210MeV. This shows that the phase transition
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Figure 1: Relation between the isospin number densjtyand the isospin number chemical potentigl
The green, red and blue curves show our resultd ferl, 4.4 and 100, respectively. The pink dashed-curve
shows the result given by the chiral Lagrangian in H&f. Each choice ofA corresponds tan,, = 610MeV,
980MeV and 1210MeV, respectively.

is of the second order and the critical chemical potential is predicted to be equal to the pion mass.
This is consistent with the result obtained by the chiral Lagrangian approach irBRefufther-

more, our result on the relation between isospin number density and isospin chemical potential for
smally, agrees with the following one obtained by ) chiral Lagrangiand:

n = f2y, <1—m?}>. (3.2)
H

For u > 500 MeV, there is a difference between our predictions and the one frgyh) ©hiral
Lagrangian, which can be understood as the higher order contribution as we will show in the next
section.
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We show they; dependences of these condensate inZjgvhere(o) is the “o"-condensate
at u = 0. This shows that thed”-condensate decreases rapidly after the phase transition where
the -condensate grows rapidly. The*-condensate becomes very small fpr> 400 MeV, while
the m-condensate keeps increasing. Using the for®) O (u — pf)” near the phase transition
point, we fit the critical exponent to obtainv = % This implies that the phase transition here is
the mean field type.

We also show the “chiral circle" in Fi@ It is remarkable that the value of the “chiral con-
densate" defined by

(0) = \/(0)2+ ()2 (3.3)

is constant for increasing isospin chemical potentjefbr 1 < 300 MeV, and that it grows rapidly
in the largey, region.
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Figure 2: 11 depéhdences of threcondensate (red Figure 3: The chiraf tircle is showed as the red
curve) and the §"-condensate (green curve). curve. The black curve is an unit circle.

4. Comparison with the chiral Lagrangian

In this section, we compare our result for the relation between the isospin number dagnsity
andy, shown in Fig[llas well as they -dependences of theecondensate and th@"-condensate
in Fig.[2, with the ones from the chiral Lagrangian including thep)(terms. Here we use the
chiral Lagrangian for two flavor cadd][ One can simply introduce the isospin chemical potential
Ly as vacuum expectation values of these external gauge fieKd%’j:)s: <%ﬁ> = “—2'60“ [3. By
minimizing the effective potential, we can obtain the relation betwgemdy,, % and%.

In Ref.[I], we fitted the values of the relevant low-energy constants in the chiral Lagrangian
to our result on they dependence af , % and % We find that the deviation of our result
from the one obtained from th@(p?) chiral Lagrangian is actually explained by including effects

of O(p*) terms.

5. A summary and discussions

We studied the phase transition to the pion condensation phase for finite isospin chemical
potential using the holographic QCD model given in R&l By introducding the isospin chemical
potentialy, as a UV-boundary value of the time component of the gauge field of $d{@hmetry
asV3(2)|s = w. We assumed non-existence of vector meson condensates since we are interested
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in studying the smally region. Furthermore, we assumed that the neutral pion does not condense.
We solved the coupled equations of motion for theondensate and”-condensate togethé/g
to determiney; as an eigenvalue.

Our result shows that the phase transition is of the second order and the critical chemical
potential is predicted to be equal to the pion mass. This is consistent with the result obtained by
the chiral Lagrangian approach in R, [but contrary to the result in Ref?]. Furthermore, our
result on the relation between isospin number density and isospin chemical potential foggsmall
agrees with the following one obtained by 83) chiral Lagrangiar@|. For largey; (> 500 MeV),
there is a difference between our predictions and the one frgpd)@hiral Lagrangian, which is
shown to be understood as thé¢p®) contributions.

We also studied thg, dependence of the-condensate andd”-condensate. Our result shows
that, at the phase transition point, tirecondensate increases from zero with the mean field ex-
ponent Furthermore, we find that the™condensate decreases rapidly after the phase transi-
tion where therr-condensate grows rapidly, while the value of the "chiral condensate" defined
by (o) = \/{0)2+ ()2 is constant for; < 300 MeV, and that it grows rapidly in the large
region. This indicates that the chiral symmetry restoration at finite baryon density and/or finite
temperature will be delayed when non-zero isospin chemical potential is turned on.
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