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In star-forming regions, dust and polycyclic aromatic lyaarbons (PAHS) absorb a significant
fraction of stellar ultraviolet (UV) photons and re-radidhem in the infrared (IR). Hence the IR
luminosities due to dust and PAH emission are both powenfulktto trace star-forming activities
in galaxies. However they are not merely tracers of stamédion activity. Spectral information
on the dust and PAH emission would have much deeper physigdiciations for understanding
the properties of the ISM. External galaxies provide us veitmuch wider range of the ISM
physical conditions than our Galaxy. For example, Spitz&t-iR spectroscopy has shown a
variety of the PAH emission features for various types ofageds, which reflects significant
changes in the properties of PAHSs, such as an ionizatioe atad a size distribution. AKARI
near-IR spectroscopy has revealed spatial variationsenrtensity ratio of the aromatic to the
aliphatic hydrocarbon spectral feature in galaxies, iatlig structural changes of carbonaceous
grains in shocked regions.

The relation of PAH to far-IR dust is another important prdbestudy the conditions of the
interstellar environments. In general, PAHs and far-IRtéwe mixed well in the ISM, producing
global correlations between their IR luminosities. In loaeeas within a galaxy, however, their
abundance ratios are expected to vary substantially dugteécactions with interstellar shocks,
hard UV radiation fields and diffuse X-ray hot plasmas. Urdiently, spatial resolutions in the
far-IR were extremely poor compared with those in the nead raid-IR. Herschel now enables
us to make a detailed comparison of the spatial distribstiminfar-IR dust and PAH emission
within a galaxy.

This paper reviews recent observational results on the IR®am properties of dust and PAHs
exposed to various environments of nearby galaxies, wlinge from passive elliptical galaxies
to starburst galaxies with galactic superwinds, and (Wltreninous infrared galaxies. In particu-
lar, the paper focuses on variations in the PAH spectralifeatand PAH to far-IR dust ratios to
discuss their implications for the processing of carbopaseyrains in harsh interstellar environ-
ments to understand the fate of dust processed by shocksdiadion through the evolution of

galaxies.
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1. Infrared observations of dust in nearby galaxies

Nearby galaxies provide a wide range of the physical and chemicaltmmrslof the inter-
stellar medium (ISM), compared to our Galaxy, the Large Magellanic ClodMiQ)Land the Small
Magellanic Cloud (SMC). These ISM conditions include the intensity andnesslof interstellar
radiation field, metallicity, stellar population, large-scale shocks, hot plaswieoaments, and
so on. Their proximity £ 10 Mpc) enables us to perform spatially-resolved studies on the ISM
structures of galaxies, although they are not close enough to studycinberbetween stars and the
ISM. The latter study can be carried out for our Galaxy and the LMC/SMTd, therefore nearby
galaxies are complementary to Galactic and Magellanic targets for the ISM stueAit galax-
ies, such as dwarf and elliptical galaxies, can only be studied when theglatively nearby €
10 Mpc). Accurate calibration of infrared (IR) dust emission in neardhaxjes as star-formation
indicators is also important for study of distant galaxies.

Space IR observations of dust in nearby galaxies started with IRAS i8; 1B&\S detected
more than 25000 galaxies, which included spiral galaxies, Seyfertigalaxd even early-type
galaxies [IL[R[]3[]4]. IRAS discovered new classes of IR-brightxigdasuch as luminous IR
galaxies (LIRGs) and ultraluminous IR galaxies (ULIRG$)[]5, 6]. Follayiihe photometric sur-
veys by IRAS, ISO performed IR spectroscopic observations oftiyegalaxies, which covered
a wavelength range from 2 to 2Q@m continuously [[7[]8]. In particular, spectroscopic studies of
polycyclic aromatic hydrocarbons (PAHS) for galaxies in the near- andiRiidere initiated with
ISO, which were carried out not only for IR-bright galaxies but atsorformal galaxieq9].

Following IRAS and ISO, Spitzer enabled us to study nearby galaxies withdagsitivities
and high imaging capabilities especially in the mid-IR, thanks to the improvement detbetor
technologies. AKARI performed all-sky surveys in the mid- and far-IR wiipher sensitivities
and spatial resolutions than IRAS. Recently Herschel realized urgentaly high spatial resolu-
tions in the far-IR thanks to a 3.5-m-diameter telescope, which detected destmiletires of the
cold ISM in nearby galaxies. Spectroscopically, high-sensitivity S#86and 2.5-5um spectra of
nearby galaxies were obtained with Spitzer/IRS and AKARI/IRC, resgeygtiA sub-mm wave-
length coverage beyond 2@0n was realized with Herschel/SPIRE. There are many observational
programs which systematically study nearby galaxies with Spitzer, AKARHeasschel, such as
SINGS [19], ISMGN [11L], KINGFISH[[1R], and DGST1L3].

With Spitzer/IRS, detailed studies of the PAH emission features are carridzshead on the
mid-IR spectra of the SINGS sample]14]. It is found that the PAH feataresiotably similar
among star-forming galaxies. Spitzer/IRS improves the determination of tpeshad the overall
strengths of the PAH profiles. One of the Spitzer/IRS findings is them broad feature commonly
detected in galaxies, which shows a very tight correlation with the uiti3feature [14]. The
feature is likely due to relatively large PAHs in a C-C-C bending mode. Mecently, significant
variations of the PAH spectral features were discovered from galagglaxy; early-type galaxies
show unusually weak 6-Am PAH features relative to the features at longer wavelengths (Fig.1)
(L3, [@&,[1F,[18]. According to recent results, about half of the SpIRE sample of 91 nearby
early-type galaxies show the PAH emission, and 80-90 % of them show similadl 6—9um
PAH features[[J9[ 20]. The low ratios of the 7uii to the 11.3um feature can be explained
by predominance of either large PAHs or neutral PAHs. The low ratiosbeamore efficiently
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Figure 1: Mid-IR spectra of nearby galaxies obtained with Spitze®1Reft) star-forming galaxieﬂ]M] and
(right) elliptial galaxies EB]. Note that strong PAH feegs at 6—9um in the left panel are faint in the right
panel.

reproduced by predominance of neutral PAHY [21], the situation oftwisienore reasonable for
soft radiation field due to old stars in elliptical galaxigd [[[7, 18].

The correlations between the spatial distributions of PAHs, hot dust @dddast in nearby
galaxies were studied using Spitzer/IRAC and MIPS imaging data. Bendo €P3].clearly
showed that the IRAC @m / MIPS 24 um band intensity ratios are low in HIl regions, while
PAHs (IRAC 8 um) are well correlated with cold dust (MIPS 1¢0m). They interpreted that
PAHSs are selectively destroyed due to intense radiation in HIl regions.nTdtallicity effects on
the PAH emission and IR colors were also revealed by Spitzer. It wasl fina a threshold for the
presence of PAHs exists around 12+log(O/H)E§ [23] and also thatubieteémperature increases
with decreasing metallicity [24].

Herschel/PACS and SPIRE enable us to map the properties of cold dusiriyrgalaxies.
Using the KINGFISH sample, Galametz et §1.][25] derived the spatial disitiisiof dust temper-
atureT and emissivity power-law indeg in galaxies to find an anti-correlation betwe@mandT .
Rémy-Ruyer et al.[[26] systematically investigated the properties of coldimllmwv-metallicity
dwarf galaxies, combining 48 DGS galaxies with 12+log(O/H)=7.0-8.5 arkiIRGFISH galax-
ies with 12+log(O/H)=7.8-8.7. They found a systematic change in the 7Q30§pectral energy
distributions (SEDs) with metallicity; dust in the DGS sample is warmer than in the KISB
sample, but there is no systematic differencgibetween the samples. They also found excess
emission at 50@:m on top of the modified blackbody dust continuum from a substantial fraofio
their sample galaxies. This may be due to very celdlQ K) dust, which calls for unrealistically
high dust-to-gas mass ratios. Another possibility is spinning dust, the origvhich is thought to
be PAHs. This scenario is, however, inconsistent with the observatiemal that low-metallicity
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dwarf galaxies show relatively low PAH abundances. The excess megldied to the nature of
amorphous solid opacity [R7]. Very recently, metallic particles were alspqsed for the origin
of the 500um excess[[38]. Although the excess emission has potentially important phiysic
plications, the presence of the excess itself is still controversial; Kirkpagti@al. [29] reported
no substantial excess at 50@n for the KINGFISH sample, which may be related to metallicity
effects.

2. Interpretations based on dust SED models

Proper modeling of dust SEDs is indispensable to physically interpret #erational data
of nearby galaxies. In the classical dust model established by Désetargjer, and Pugef [30],
three dust components are incorporated, namely PAHs, carbonaeegusmall grains (VSGS)
amd big grains (BGs). The dust size distribution is chosen to reproducebesved extinction
(and emission). Since then, every dust model, in principle, assumed theg®eents similarly,
but there is a significant difference in the grain opacity from model to mddelexample, the
Draine & Li model (DLO7) [2]L] adopted the optical properties of grapfB@, while the DustEM
model [32] used those of hydrogenated amorphous carbon (HAJdB8arbonaceous dust. The
radiation field intensity is usually given in units of the starlight intensity in the setaghborhood,
U, which is defined in a photon energy range of 0-13.6[eY [34]. This is eveabto the far-Uv
(6—13.6 eV) interstellar radiation field3p, used in the PDR model. For galaxies, the mass of
dustMgus{U ) illuminated by the radiation fieltd is assumed to follow a power-law distribution
dMgus(U) O U~%dU [BY]. Before the Spitzer era, Galliano et al_]J[36] created a sophisticated
dust SED model, in which they determined the interstellar radiation field se#fistently through
UV-optical and IR-mm observations with IR ionic lines. Applying the model to-foetallicity
galaxies, they found the presence of very cold dust (5—7 K) occgmlimost a half of the total
dust mass[[37]. They pointed out that most grains are likely to be in a stich@ating mode in
the low-metallicity environment§ [B7].

In the Spitzer and Herschel eras, one of the most popular dust SEDIsTfodestudies of
nearby galaxies has been the DLO7 mofld| [21], in which the treatment 8ftHecomponent has
been improved much, compared to the previous models. In the model, the ifderstdiation
field, to which dust is exposed, consists of two components: the genfusledl SM component
represented by a single radiation field streridgl, and photodissociation region (PDR) component
which has a power-law distribution frobinin to Umax. By applying the dust model to the SEDs of
the Spitzer/SINGS sample, it was found that the fractional mass of PAHs tottdedust,qpan,
shows a significant variation from galaxy to galaxy with a median value of 38§ With
the model, it was clearly shown that dust in the diffuse ISM dominates the Wep’0—90 %)
rather than dust in PDRs. Even when Herschel data points are addezl $pitaer SEDs for the
KINGFISH sample, the model parameters are found to be relatively ugeldasuch agpan, Umin,
Maust €xcept that the fraction of dust heating attributed to intense radiation fiskisxciated with
PDRs is found to be- 20 % larger when Herschel data are included in the analydis [39].

The high spatial resolution of Herschel imaging data enables to perfoatraby-resolved
SED fitting to a combination of the Spitzer mid-IR and Herschel far-IR datandJ&he DLO7
model, dust-to-gas mass ratio maps were created for NGC 628 and NG(i4As a result, the



Properties of dust and PAHS in various environments of nggeiaxies Hidehiro Kaneda

PAH/FIR =

v (65pum)+vF (90pum)+1F (140pm)
o

-
i .

Figure 2: (Top) Spatial distribution of oxygen-rich and carbon-ri&lsB stars along the Galactic plane
[@]. (Bottom) Distribution of PAH/far-IR intensity rat&) as defined by the equation in the panel, along the
Galactic plane. Both distributions are obtained using tK&RI all-sky survey data.

dust-to-gas mass ratio is found to vary by almost one order of magnitu@@@4—0.04) within the
galaxies[[4P]. The high spatial resolution of Herschel data also allomaddying the dependence
of the PAH abundance on the metallicity for individual HIl regions in galaffgl; the result
suggested that the dependence is not caused by metallicity-dependesatido of PAHS, but rather
by their destruction; a similar result was reported for the low-metallicity envivemt in the SMC
7).

The DustEM model adopts amorphous carbon instead of graphite whickdsmushe DLO7
model. The change of amorphous carbon from graphite results in lowréndust mass derived
by the model fitting by a factor of 2—3, because of the higher far-IR tersabemissivity for
amorphous carborf [h3]. Observationally 80-100 % of the C atoms in etaekyions are in the
gas phase[J44], while 30-100 % of dust is expected to be destroyed 10 km/s shocks for
amorphous carbon, but only 15 % for graphite] [f5, 46]. Therefoeeatsumption of amorphous
carbon for carbonaceous grains might be better to explain the gas-phasdance of C atoms
observed in shocked regions.

A dominant dust population may be different between far-IR and sub-egroms due to higher
absorption efficiency of amorphous carbon in the near-IR than amospsiticate, causing car-
bonaceous dust to have higher temperatures than silicate[ duft[3Eigdie 2 shows the spatial
distributions of carbon-rich (C-rich) and oxygen-rich (O-rich) asyotig giant branch (AGB) stars,
derived using the color-color diagrams of the 9 andgub8 band fluxes in the AKARI all-sky point-
source catalog, with the 2MAS§ H, andK band ﬂuxes[@?]. As can be seen in the figure, the
O-rich AGBs are more concentrated toward the Galactic center, while theh@xGBs are rather
uniformly distributed throughout the Galactic plane. The lower panel indictitat interstellar
PAHs and far-IR dust grains are similar in the spatial distribution, in contoathe difference in
the distribution between the dominant suppliers of carbonaceous and sgiedts, C-rich and
O-rich AGBs. This may suggest that silicate grains do not make a signiftcemtiibution to the
far-IR emission in the diffuse ISM, but to the sub-mm regions.

As to the behavior of the sub-mm opacity of amorphous grains, pure daliel{shysics can



Properties of dust and PAHs in various environments of nggedaxies Hidehiro Kaneda

explain the change of the emissivity power-law ingewith physical parameter§ [7]. One com-
ponent to be considered for the sub-mm opacity is related to the disorciesegk distribution with
the correlation length for charge neutralify][48], which predicts an irseed3 up to 4 with wave-
length. Another is expressed as two level systems causing charge tratsittanneling effects
due to defects in lattice, which predicts a decreasg wiith temperature[[49]. Thus the sub-mm
opacity depends on the physical properties of amorphous graingiaibpthe degree of process-
ing, but not chemical compaosition much. Although the origin of the F@® excess indicated by
the Herschel data is still quite uncertain, the sub-mm opacity potentially delivgrortant infor-
mation on the nature of grains, and its proper treatment should be requoiréatdire dust SED
models.

3. Propertiesof dust in active galaxies

This section and the next describe several results on the propertiestafliserved for particu-
lar targets of active and passive galaxies, respectively. Among theefagalaxies, nearby edge-on
starburst galaxies with prominent galactic superwinds are important tacetslerstand the pro-
cessing of dust through material circulation on a galactic scale. For Mo82xample, Spitzer,
AKARI, and Herschel detect copious amounts of BGs and PAHs flowirigobthe disk through
galactic superwindd 5§, bL,]52]. In totak25 % of all the dust has been expelled from the disk
[F3, E3]. Figure[B shows the distribution of the PAH emission in M 82, whichigely extended
toward the halo regions. It is found that there is an excellent correlagbmeen the PAH and ¢d
distributions [5]l]. The spectro-polarimetry showed that I4 significantly (5- 15 %) polarized
[B4], which suggests that ¢4 photons from the galactic disk are scattered by dust grains in the
halo toward us. The excellent spatial correlation can be explained saicthéhPAHSs are produced
by shattering of the dust grains by shockd [55]. Moreover it wasddbat the dust flow velocity
estimated from a shift of the ¢ line decreases from:200 km st down to~0 km st with the
height from the disk (0-1.4 kpc), which implies that the dust grains thusegs®d are likely to be
falling back toward the dis{$4].

As also shown in Figd[] 3, using the AKARI near-IR spectroscopy, the BAH:m emission
and the 3.4-3.6im features are clearly detected in the halo regions, which are locatedstiaasd
of 2 kpc away from the galactic center, thus confirming the presence HsRAen in the harsh
environment of the M82 hald [b6]. The observed spectral properteeguite different from those
commonly seen in other spiral galaxies; the 3.4-86 features are unusually strong in the halo,
suggesting the dominance of aliphatic structures over aromatic ones. Fed¥ tiear-IR spectra
taken from the center, disk and halo regions of M82, it is revealed thatlipleatic to aromatic
ratios systematically increase with the distance from the center, which seemsonistent with
the above picture of shattering of carbonaceous grains by shockslualtne

For about 200 star-forming galaxies in the redshift range-6f01-0.1, a global relation is
investigated between the PAH 3.8n luminosity, L3 3, and the total IR (8—100Am) luminosity,
Lir [BA]. The sample is classified into IR galaxies (IRGg < 10'L.), luminous IR galaxies
(LIRGs: Lir ~ 10 —10'2L.) and ultra-luminous IR galaxies (ULIRG4:r > 10%L.). ltis
confirmed that many of the IRGs and LIRGs follow the relationghjp/Lir ~ 10~3, which is a
ratio typical of starburst galaxie§ [58]. At the same time, it is also foundttieaks3/Lir ratio
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Figure 3: Contour map of M 82 in the AKARI 7um (PAH) band overlaid on the édimages El]. The
2.5—-4.5um spectra obtained by the AKARI near-IR spectroscopy ara/stiogether, which are taken from

the positions indicated in theffm map.

considerably decreases toward the luminous end in the ULIRG populaitmal ULIRGs may in-
trinsically possess smaller amounts of PAHSs relative to BGs, as a resultbpRiessing through
recent galaxy mergers. Some fraction of PAHs may have been destingedy shocks which oc-
curred during a merging process, whereas BGs survive, which sstent with the observational
indication that local ULIRGs are merging galaxies (e[g] [59]).

4. Propertiesof dust in passive galaxies

Elliptical galaxies provide us with another extreme case, representingdtad tre lifecycle of
dust. In such passive galaxies, the origin of dust itself has been a nfatehate (e.g.[J4]). Some
elliptical galaxies contain surprisingly large dust masses, consideringftbiert destruction by
sputtering in the hot plasma environmerftd [60,[6], 62]. Spitzer observeyl easly-type galaxies,
but did not clearly show a significant correlation between their far-IR lasities andB-band
luminosities [6B]. This result suggests that the amount of the BGs remaining mefaxies may
not be related to the stellar mass loss of evolved cool stars. Hence a@teduigion on whether
a majority of dust is of internal (stellar) origin or external (gas-rich mergeigin is yet to be
reached. As described above, Spitzer detected PAH emission in elliptieadegawith unusual
band ratios; the usually strongest uih feature is notably weak, whereas the 1 feature is
relatively strong. It is concluded that neutral PAHS, rather than ionirexs, become dominant in
very soft radiation fields, typical of elliptical galaxies, giving rise to thiatf&-C vibration features
at 6-8um. It should be noted that the PAH 11u8n emission does not represent any star-forming
activity in this case, although PAH emission is often used as star-formatiomtodsdor studies of
galaxies. It is suggested that the AGN-assisted feedback outflow foEnteal reservoir may play
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Figure 4: Spitzer/IRS spectral mapping images of the PAH 1118 feature and 5.5-6.Fm continuum
emission for the elliptical galaxy NGC 458E[66]. The HemskKRACS 70, 100 and 16Am maps of the
same galaxies.

an important role in supplying dust into the interstellar space of elliptical galdi#[65]; PAHs
might come from residual dust fragments originating from the sputteringoélgrains.

Figure[# shows the spatial distribution of PAHs in an elliptical galaxy, NGCO45&yether
with that of the stellar (5.5-6.5m) continuum emissior{ [§6]. The distributions of both the PAH
11.3 um and the continuum emission were obtained with Spitzer/IRS spectral mappsegva-
tions. The figure reveals that the PAHs are compactly distributed along a-aisodust lane in
the galactic center. Figuig 4 also shows the spatial distribution of dust in #8388 at 70, 100
and 160um, obtained by deep imaging observations with Herschel/PACS (Kaneddrepetp.).
The far-IR dust emission is spatially well resolved, exhibiting distributiorigecgimilar to PAHSs.
Since PAHSs are likely to be old remnants originating from mass losses fronmiatiéate-mass
stars, while silicate grains are currently being produced by low-masseaxvstars (if they are both
of internal origin), this similarity may have deep physical implications for théutian of the ISM
in old galaxies. The AKARI near-IR spectroscopy of NGC 4589 shdvesig absorption features
due to SiO and CO around 4.2—-4uv from much wider areas of the galaxy than the PAH and dust
emission [[6]7]. These absorption features are most likely to originate franmiass O-rich stars
[Fg], which are currently supplying silicate but not carbonaceoumgraience the Herschel ob-
servation suggests that the silicate grains being currently produced byéss O-rich stars make
only a minor contribution to the total far-IR dust emission observed in NG®458
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Figure5: lllustration to show that nearby galaxies are importantricamel the whole story of the life cycle
of dust in the universe with the current and future major ole#gonal facilities.

5. Summary and future

Thanks to the development of IR observational technologies in spaoetusts of nearby
galaxies are now spatially resolved in PAH, VSG and BG emission, whichrizdnesl us to discuss
their relationships in some detail. In particular, the understanding of the Péiss®n in galaxies
has improved very much with the advent of Spitzer, while many pieces ofnvdtion on the
distributions of BGs within galaxies and their spatially-resolved propertisbban obtained with
Herschel. The AKARI all-sky surveys and near-IR spectroscopyasithplement the Spitzer and
Herschel studies of nearby galaxies. Among the results presented, dbbevnass fraction of PAHs
to BGs and the PAH band ratios are found to vary substantially with the interstell@onments
in galaxies: for example, with the intense radiation field in dwarf galaxiest ¢déinregions in
spiral galaxies, and the soft radiation field in early-type galaxies. Thewer of the dust opacity
in the far-IR to sub-mm region including the 5p@n excess and the aliphatic to aromatic ratios in
the near-IR are also useful probes of the interstellar environmentgiefipen the degree of dust
processing in mildly shocked regions. These two results are important évstadd the fate of dust
processed by shocks and radiation through the evolution of galaxieschEmical compositions of
VSGs and BGs are, however, still quite unknown observationally, amndeunid- to far-IR spectral
data which fills the gap between Spitzer and Herschel (Fig. 5) would legatta understand their
compositions.
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