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Amorphous silicates are expected to be one of the major constituents of dust in the interstellar
medium. Laboratory investigations of these compounds are therefore crucial for bettering the
understanding of the nature of interstellar dust. For our measurements, we used synthetic ana-
log materials, produced by quenching of melts with well-defined chemical compositions. We
performed transmission measurements on a variety of pyroxene-like amorphous silicates with
various Mg/Fe-ratios. The wavelength-dependent opacities of these samples in the wavelength
range between 50 µm and 1.2 mm and in the temperature range between 300 K and 10 K have
been investigated. We observed not only a temperature dependence of the opacities, but also a
clear dependence on the iron content. The reason for this behavior lies in the microstructure of
amorphous silicates, but is not yet completely explored.
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1. Introduction

The galactic energy balance is significantly influenced by interstellar dust. It absorbs radiation
at ultraviolet and visible wavelengths and re-emits it in the infrared and mm-wave range. At least
30% of the total amount of energy emitted by stars as starlight is absorbed and re-emitted by dust
grains in this manner [1]. The low temperature of grains in the interstellar medium leads thereby
to emission at long wavelengths.

It has been known for several decades that silicates are a fundamental constituent of interstellar
dust [2]. Since their first detection in the late 1960s, the prominent silicate features at 10 µm and 18
µm wavelength have been probed at several surveys. They occur similarly everywhere in the ISM
of the Milky Way, independent of the line of sight. Although the observed features differ slightly in
their shapes and intensities, depending on the observed region, they are all smooth and very broad.
This excludes the presence of a significant amount of crystalline silicates, which would cause sharp
and narrow features.

The low temperature optical properties of astronomically relevant silicate dust species at FIR
and sub-mm wavelengths have been investigated by several authors in recent years. These inves-
tigations dealt mainly with pure magnesium silicates [3, 4], in one case additionally with a pure
iron silicate [5]. The influence of a gradual integration of iron has never been studied before.
However, all studies revealed a clear temperature dependence of the opacities of silicate grains,
particularly of amorphous phases. While focusing on those same phases, we expand the currently
available dataset with regard to the influence of the incorporation of Fe atoms into the amorphous
network. Our data will be useful for the interpretation of observed spectra from current projects
like SOFIA and ALMA, and should contribute to an understanding of observations from the recent
space missions Herschel and Spitzer.

2. Sample preparation and measurement procedure

We synthesized a series of Mg/Fe-glasses with pyroxene-like chemism (MgxFe1−xSiO3). This
has been done by quenching of melts using rotating copper rolls [6]. Mixtures of certain amounts of
magnesium carbonate (MgCO3), iron oxalate (C2FeO4 · 2H2O), and silicon dioxide powder (SiO2)
served thereby as precursors for our melts. Since the actual water content of chemicals may change
due to surface reactions once they are exposed to air humidity for some time, we frequently checked
the water content of our ingredients. Thus, we were able to determine the required mass of precur-
sor material for the different compositions of melts much more precisely and, as a consequence,
regulate the chemism of the resulting glasses with a higher accuracy. The glasses were melted at
temperatures above 1600◦C. The samples, which were placed in a platinum crucible, were removed
from the hT-oven at the maximum temperature and immediately poured between two copper rolls,
of which one is rotating, driven by an electric engine. The fast cooling preserves the disordered
state of the melt and avoids crystallization processes. Unfortunately, it is not possible to completely
avoid some early stages of crystallization. The phase content depends on the iron content of the
melt. While iron-free MgSiO3 is almost totally amorphous, a higher iron content tends to result in
increased crystallinity. To get appropriate samples it is therefore necessary to remove crystallized
areas. The phases are discriminable based on different optically visible characteristics. We separted
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amorphous from crystalline phases using a binocular microscope. After removing the crystalline
fraction, the remaining glassy fragments were ground to a fine powder. A very small percentage
of this powder was embedded into a KBr pellet in order to verify its amorphousness by a MIR
absorption measurement.

To measure in the far-infrared region, hot pressed polyethylene pellets with a diameter of 13
mm were used. For measurements in the spectral range between 50 µm and 300 µm we chose a
sample to PE ratio of 1:16 with a sample mass of 10 mg. In order to prohibit scattering effects at
these relatively short wavelengths we selected grains with a size of 1 µm or less by sedimentation
in acetone. For wavelengths above 300 µm we applied pellets with a sample to PE ratio of 8:1 and
either 400 mg or 2,4 g (or more) of sample material. The massive pellets deliver the most accurate
values at wavelengths around 1 mm but are not measurable below ∼500 µm because of their high
optical depth.

We could obtain glasses in the compositional range between MgSiO3 and Mg0,5Fe0,5SiO3. We
used scanning electron microscopy to check the chemical homogeneity of the samples and electron
microprobe analysis to determine their chemical compositions. It turned out that the homogeneity
also depends on the iron content. While glasses with a Fe/Mg ratio of 1:3 or lower are absolutely
homogeneous, the presence of a higher amount of iron leads to some kind of phase separation into
regions with different elemental abundances (±5% for Si, Fe; less for Mg), spatially separated by
a few tens of microns and with smooth transitions from one to another. The separation takes place
within the amorphous network and is not accompanied by crystallization. The mean composition
of all samples deviates by less than 2 mass-% per element from the respective index values. This
deviation is also not exceeded for the homogeneous samples.

For our FIR absorption measurements we used an FTIR spectrometer BRUKER IFS 113v. A
LHe continuous flow cryostat, equipped with polyethylene windows, was placed directly into the
optical path. For the 1:16 pellets we used a pellet made from pure polyethylene for the reference
measurements. This approach is not practicable for the 8:1 pellets because the refractive index
of the mixture is completely different from that of pure polyethylene. For that reason, we con-
ducted measurements of the empty beam path as reference and calculated the reflection loses of
the samples using effective medium approximations. The spectra obtained from measurements of
8:1 pellets with a sample amount of 400 mg at wavelengths above 250 µm show several fringes
at periodic intervals. These fringes are caused by multiple reflections between the surfaces of the
pellet. In order to remove these effects we did a least squares fit to the spectrum using a fifth-order
polynomial. For all the other measured pellet concentrations and thicknesses interferences caused
by reflections do not play an important role.

To adapt our measured absorptivities to those of free-flying single grains, we applied the
Bruggeman model to compute theoretical mass absorption coefficients for single grains and ag-
glomerates in a matrix. Thus we could calculate a correction factor, which we used to adapt our
data derived from high-concentration pellet measurements. For sample concentrations <1/3 of the
total volume, there is no way to compute theoretical absorptivities without assuming a certain grain
shape. Therefore, the low-concentration pellet spectra were fitted to those obtained from high-
concentration pellets. For a detailed description of the Bruggeman model and its application, we
refer to papers by Henning et al. (1995) [7] and Boudet et al. (2005) [4].
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3. Results

The wavelength dependent mass absorption coefficient κ of MgSiO3 glass for temperatures
between room temperature and 10 K is shown in Figure 1. To cover the indicated spectral range
with the highest possible accuracy, spectra taken from measurements of three pellets have been
merged for each temperature. It is evident that a strong temperature dependence of the absorption
occurs only at longer wavelengths. The shorter the wavelength, the more the curves of all temper-
atures converge to one uniform value of κ . Generally, the mass absorption coefficient decreases
with increasing wavelength and with decreasing temperature. The appearance of our curves is in
good agreement with recent works by Boudet et al. (2005) and Coupeaud et al. (2011) [8]. It has
to be mentioned that the absolute κ-values of the latter are in general higher than ours, which may
be due to the fact, that their sample material was not a glass, but a sol-gel product. The data from
Boudet et al. fits ours almost perfectly, except for the longest wavelengths where our measurements
deliver slightly lower values.

The iron containing glasses show similar behavior to MgSiO3, only the absolute values of κ

are changing according to the incorporated iron fraction. Since the temperature dependence is sig-
nificant at longer wavelengths, we will focus in the following on the spectral region λ > 0.5 mm.
Comparing our measurements with regard to the iron content, we find that MgSiO3, for some rea-
son, is the best absorbing material. The presence of iron seems to lower the absorptivity in general,
but apparently without following a constant trend. Room temperature mass absorption coefficients
of samples with various iron contents are compared in Figure 2. The spectra are obtained only
from measurements of 400 mg pellets and the plotted values at wavelengths close to 1 mm may
thus deviate from those of 2,4 g pellets, which are expected to provide more accurate values. Most
likely, the actual curves would be located slightly lower than the ones shown. We have to apply the
depicted curves until more experimental data of high mass pellets, especially for Fe-rich glasses,
are available. However, the plot is totally suitable for demonstrating the basic behavior. Starting
from MgSiO3, κ decreases with increasing iron content up to the composition Mg0.7Fe0.3SiO3,

Fig. 1: Mass absorption coefficient for amorphous MgSiO3 at different temperatures
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Fig. 2: κ-values at 300 K of amorphous pyroxene-like silicates with variable Mg/Fe-ratio (MgxFe1−xSiO3;
solid black: x = 1, dashed red: x = 0.9, dotted green: x = 0.8, dash-dotted blue: x = 0.7, dash-double-dotted
magenta: x = 0.6, short-dashed purple: x = 0.5)

which is the weakest absorber of our sample set. By incorporating still more iron in the amor-
phous network, the absorptivity rises again. We do not believe that this behavior is an intrinsic
property of the amorphous silicates. Rather, it is caused either by Fe3+-induced disruptions of the
network or by nanoscale iron inclusions like magnetite. Both alternatives are conceivable because
the quenching process of our melts cannot be conducted under defined atmospheric conditions.
However, detailed investigations on the microstructure of the glasses are necessary to understand
the mechanisms governing the observed absorption. We plan to perform several structure elucidat-
ing measurements in the near future. The corresponding analytical methods are presented in the
last section of this article.

4. Future work

We will continue and complete our measurements at the far infrared range and expand them,
especially by reckoning glasses with olivine-like stoichiometry. It is also planned to expand the ex-
amined wavelength range towards longer wavelengths. For that purpose, a total power microwave
spectrometer, equipped with a closed cycle LHe-cryostat, has already been designed and built
(Cologne). First test of the setup have been carried out and went successfully. It is intended to take
spectra up to a wavelength of 4 mm.

Furthermore, it will be crucial to conduct a series of microstructural investigations on the
glasses. We will apply Mössbauer spectroscopy to determine the ratio of divalent to trivalent iron in
our samples, which may have major impact on the absorption properties. By now, one measurement
of Mg0.7Fe0.3SiO3 has been carried out and revealed a ratio Fe2+/Fe3+ of almost exactly 1. Of
course we will have to obtain values for all our samples, which will be time-consuming because
of the required integration time of about one week per measurement. Parallel to this we will apply
Raman spectroscopy and high resolution transmission electron microscopy to determine the ratio
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of bridging to non-bridging oxygen and to check our samples for inclusions and possible medium-
range ordered areas, respectively. If necessary, we will expand the structural investigations to other
methods, like NMR spectroscopy, in order to gain a clearer understanding of the possible processes
governing the observed optical properties.
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