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A 125 GeV Higgs boson was discovered at the LHC [1] which is consistent with the Higgs
boson in the standard model, so the next stage of the particle physics will be to clarify the dynamical
origin of the Higgs boson. One of the theory beyond the standard model is the walking technicolor,
which, based on the approximately scale-invariant gauge dynamics, predicted a large anomalous
mass dimensionγm ≃ 1 and a pseudo Nambu-Goldstone (NG) boson of the approximate scale
invariance, “technidilaton", as a light composite Higgs boson [2]. The technidilaton was actually
shown to be consistent with the current LHC data for the Higgs [3, 4].

Being strongly coupled dynamics, the walking technicolor would need fully nonperturbative
calculations in order to make reliable estimate of the properties of the technidilaton and other com-
posite particles to be compared with the upcoming high statistics data at the LHC-Run II. There
have been many works on the lattice simulations in search for the walking technicolor [5]. Among
others, remarkably, LatKMI Collaboration observed indication of a light flavor-singlet scalar with
comparable mass to the pion mass inNf = 8 QCD [6] and the theory was shown [7] to be the
walking theory having both signals of spontaneous chiral symmetry breaking and remnant of con-
formality. This light flavor-singlet scalar should be a candidate for the technidilaton as a light
composite Higgs boson in the walking technicolor.

However, the walking technicolor makes sense only for vanishing explicit-fermion mass,mf ≡
0, and hence the techinidilaton mass should be determined in the chiral limit. We would need an
extrapolation formula for the dilaton mass in the same sense as the usual chiral perturbation theory
(ChPT) [8] for the lattice data measured at nonzeromf to be extrapolated to the chiral limit.

In this talk, we propose a scale-invariant ChPT (sChPT) for the use of chiral extrapolation of
the lattice data on the dilaton(φ) and the pion(π) in the presence of explicit mass of the fermion
mf . It is a scale-invariant generalization of the usual ChPT [8] based on the nonlinear realization of
chiral symmetry in a way to realize the symmetry structure of the underlying walking gauge theory.

We start with the chiral and scale Ward-Takahashi (WT) identities for the axialvector (Jaµ
5 ) and

dilatation (Dµ ) currents in the underlying walking gauge theory with theNf -fermion fields (ψ):

θ µ
µ = ∂µDµ =

βNP(α)

4α
G2

µν +(1+ γm)Nf ψ̄mf ψ ,

∂µJaµ
5 = ψ̄

{
Ta,mf

}
iγ5ψ , (1)

whereTa (a= 1, · · · ,N2
f −1) are theSU(Nf ) generators, the first term of r.h.s. written in terms of

the gauge field strengthGµν is the nonperturbative trace anomaly (defined by subtracting the usual
perturbative trace anomaly) [9], andβNP(α) is the nonperturbative beta function for the nonper-
turbative running [10] of the gauge couplingα due to the fermion dynamical mass generation by
the spontaneous chiral symmetry breaking. We formulate the sChPT so as to reproduce these WT
identities.

The building blocks to construct the sChPT are:U,χ,M ,S, whereU = e2iπ/Fπ is the usual
chiral field with the pion decay constantFπ and χ = eφ/Fφ with the dilaton fieldφ and the de-
cay constantFφ . M and S are spurion fields introduced so as to incorporate explicit breaking
effects of the chiral and scale symmetries, respectively. Under the chiralSU(Nf )L×SU(Nf )R sym-
metry, these building blocks transform asU → gL ·U ·g†

R, M → gL ·M ·g†
R, χ → χ andS→ S

with gL,R ∈ SU(Nf )L,R, while under the scale symmetry they are infinitesimally transformed as
δU(x) = xν∂ νU(x), δM (x) = xν∂ νM (x), δ χ(x) = (1+ xν∂ ν)χ(x) andδS= (1+ xν∂ ν)S(x).
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The rule of the chiral-order counting [8] is thus determined consistently with both the scale and
chiral symmetries:U ∼ χ ∼ S∼ O(p0), M ∼ mf ∼ O(p2) and∂µ ∼ mπ ∼ Mφ ∼ O(p), where
mπ andMφ are pion and dilaton masses arising from the vacuum expectation values of the spurion
fieldsM andS, ⟨M ⟩= m2

π ×1Nf×Nf and⟨S⟩= 1.

We shall first consider the chiral limitmf → 0. To the leading order of derivatives (O(p2)),
the scale-invariant chiral Lagrangian is then written as

L inv
(2) =

F2
φ

2
(∂µ χ)2+

F2
π
4

χ2tr[∂µU†∂ µU ] . (2)

Note that, even in the chiral limit, the scale symmetry is explicitly broken by the dynamical gen-
eration of the fermion mass itself in the underlying walking gauge theory (“hard-scale anomaly",
or scale violation by the marginal operator) characteristic to the conformal phase transition [11]:
Both the chiral and scale symmetries are broken spontaneously by the fermion-pair condensate, and
also explicitly by both the fermion massmf and the nonperturbative trace anomaly (induced by the
same fermion-pair condensate) [9]. Hence we have the nonzero dilaton mass through the partially-

conserved dilatation current (PCDC) relation,⟨θ µ
µ ⟩=

Fφ
dθ
⟨0|θ µ

µ |φ⟩=
Fφ
4 ⟨0|∂µDµ |φ⟩=−F2

φ m2
φ

4 ̸= 0,
where the canonical dimensiondθ = 4 is understood andmφ denotes the chiral-limit dilaton mass.
We may incorporate the corresponding explicit breaking terms involving the spurion fieldS [12]:

L S
(2)hard=−

F2
φ

4
m2

φ χ4
(

log
χ
S
− 1

4

)
. (3)

Taking⟨S⟩ = 1, one can easily evaluate the trace of energy-momentum tensorθ µ
µ = ∂µDµ and its

vacuum expectation value⟨θ µ
µ ⟩|mf=0 = −F2

φ m2
φ

4 , in accord with the PCDC relation. This correctly

reproduces the underlying nonperturbative scale anomalyβNP(α)
4α ⟨G2

µν⟩ in the scale WT identity,
Eq.(1), in the chiral limitmf → 0. Note again this anomaly only includes contributions from the
nonperturbative scale anomaly [9], defined by subtracting contributions⟨θ µ

µ ⟩perturbationresponsible
for the perturbative running of the gauge couplingα: ⟨θ µ

µ ⟩−⟨θ µ
µ ⟩perturbation, and is saturated by the

gluon condensation induced by the fermion condensation.

As was discussed in Ref. [13], the explicit breaking terms due to the fermion current massmf

may also be introduced so as to reproduce the chiral WT identity in Eq.(1):

L S
(2)soft =

F2
π
4

(χ
S

)3−γm

·S4tr[M †U +U†M ]− (3− γm)F2
π

8
χ4 ·

(
Nf tr[M

†M ]
)1/2

. (4)

The factor(3− γm) in the first term reflects the full dimension of the fermion bilinear operatorψ̄ψ
in the underlying gauge theory. The scale-invariant part, the second term, having no contributions to
θ µ

µ , was introduced in the absence of the hard-scale anomaly termL S
(2)hard [13] in order to stabilize

the dilaton potential so as to make the otherwise tachyonic dilaton mass term positiveM2
φ > 0.

Inclusion of the fermion explicit massmf ∼ m2
π ∼ ⟨M ⟩ thus modifies the scale-anomaly form as

⟨θ µ
µ ⟩|mf ̸=0 =−F2

φ m2
φ

4 − (1+ γm)Nf
m2

π F2
π

2 , which correctly reproduces the anomalous WT identity in
Eq.(1) in the underlying gauge theory.
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Figure 1: The plot ofM2
φ/Λ2

χ with respect tom2
π/Λ2

χ(≡X ) obtained from Eq.(5), with Nf = 8 andFπ = 123
GeV and the chiral-limit dilaton massmφ = 125 GeV. The slopes≃ r = 2Nf F2

π /F2
φ in Eq.(5) as been taken to

be 0.2 (solid black), 0.5 (dashed black) and 1.0 (dotted black). The solid red line corresponds toM2
φ = m2

π .

The scale and chiral invariant Lagrangian at the leading orderO(p2) is thus constructed from
terms in Eqs.(2), (3) and (4): L(2) = L inv

(2) +L S
(2)hard+L S

(2)soft. From this, the dilaton mass reads

M2
φ = m2

φ +s·m2
π , s≡ (3− γm)(1+ γm)

4
·
2Nf F2

π
F2

φ
≃

2Nf F2
π

F2
φ

≡ r , (5)

where the prefactor(3−γm)(1+γm)/4= 1− (δ/2)2 ≃ 1 (δ ≡ 1−γm; (δ/2)2 ≪ 1) is very insensi-
tive to the exact value ofγm as far asγm ≃ 1 in the walking gauge theory. Equation (5) is our main
result. It is useful for determining simultaneously the chiral limit values of both the massmφ and
the decay constantFφ of the flavor-singlet scalar meson as the technidilaton of the walking techni-
color on the lattice. Simultaneous fit of the intercept and the slope of the plot ofM2

φ vs m2
π by the

lattice data would givem2
φ (intercept) and theFφ through the slope parameters≃ r ≡ 2Nf F2

π
F2

φ
. Note

that r is anNf -independent quantity, sinceF2
φ (∝ Nf ) is associated with the flavor-singlet operator

having sum ofNf flavors contributions, whileF2
π is not. For a givenNf all the quantitiesγm, Fπ , Fφ

andmπ in the expression of slope parameterscan be measured separately in the lattice simulations
on the same set up, and hence measurings would be a self-consistency check of the simulations.

In Fig. 1 we present plots(x,y) = (m2
π ,M

2
φ ) of mock-up data for general cases≃ r = (0.2,

0.5, 1.0) in the one-family model,Nf = 8 (4 weak-doublets) withFπ = vEW/
√

4 ≃ 123 GeV, by
normalizing the masses to a chiral breaking scaleΛχ = 4πFπ/

√
Nf . The first number (s= 0.2) cor-

responds to a phenomenologically favorable value [3, 4], Fφ ≃
√

2Nf Fπ/0.44≃ 1.1 TeV, consistent
with the current Higgs boson data at the LHC. The third one (s= 1.0) is the holographic estimate in
the largeNc limit [ 4]. The second value(s= 0.5) is just a sample number in between. The close-up
window on the top-left panel in the figure shows that the dilaton mass gets larger thanmπ when
the ChPT expansion parameterX ≡ m2

π/Λ2
χ = Nf m2

π/(4πFπ)
2 ≲ 0.06(0.1) for s= 0.2(0.5). Note

also that fors< 1 there exists a crossing point whereM2
φ < m2

π changes toM2
φ > m2

π near the chiral
limit, as noted in Ref. [6].

As in the case of the usual ChPT [8], chiral logarithmic corrections at the loop level would
modify the chiral scaling of the dilaton mass formula in Eq.(5). Since the dilaton is massive still
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in the chiral limit due to the nonperturbative trace anomaly, only the pion loop corrections become
significant for the chiral scaling of the dilaton mass. However, such chiral logarithmic effects turn
out to be negligibly small [14] for the current lattice status on theNf = 8 QCD [7]. For more details
on this, see the paper of Ref. [14].

In conclusion, we have established a sChPT for the pseudo-NG bosons, the pion and the dila-
ton, which will be useful in its own right in various situations. As its prominent consequence we
obtained a formula relating the massesM2

φ vs m2
π , Eq.(5), which we believe plays a vital role for

making chiral extrapolation of the lattice data of the flavor-singlet scalar meson, thereby obtain-
ing the mass (mφ ) and decay constant (Fφ ) of the technidilaton as a composite Higgs boson in the
walking technicolor.

We would like to express our sincere thanks to all the members of LatKMI for helpful discus-
sions and information. This work was supported in part by the JSPS Grant-in-Aid for Scientific
Research (S) #22224003 and (C) #23540300 (K.Y.).
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