
P
o
S
(
K
M
I
2
0
1
3
)
0
4
3

Parity violation in the CMB bispectrum by a rolling
pseudoscalar

Shohei Saga∗

Nagoya University
E-mail: saga.shohei@nagoya-u.jp

Maresuke Shiraishi
Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova
INFN, Sezione di Padova

Angelo Ricciardone
Dipartimento di Fisica e Astronomia “G. Galilei”, Università degli Studi di Padova

We investigated the parity violating signal of the temperature and polarization bispectra in the
cosmic microwave background (CMB) caused by the rolling pseudoscalar inflation. This model
is known for producing large non-Gaussianities in the tensor sector. We found that the CMB
bispectra generated in the pseudoscalar inflation have non-zero signals in both parity-even (`1 +
`2 +`3 = even) and parity-odd (`1 +`2 +`3 = odd) spaces by using the full-sky formalism. These
parity violating signals help us to detect non-Gaussianity in the tensor sector. We also discussed
the detectability of the CMB bispectra induced by the pseudoscalar inflation. Parity violating
signals improve the detectability more and we found that E-mode bispectra improve of 400% the
detectability. Furthermore, B-mode bispectrum is able to improve the signal-to-noise ratio about
3 orders of magnitude.
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1. Introduction

In the recent studies, parity violation is one of the key to explore the early Universe mod-
els. And it is known that parity violating models leave traces on the temperature fluctuation and
polarization of the cosmic microwave background (CMB).

Recent studies show that there is a model, which has strong relation between parity violation
and large tensor non-Gaussianity. The non-Gaussianity in tensor sector has raised less interest
than that in scalar sector. This is because tensor-to-scalar ratio may be too small to considered
tensor non-Gaussianity and inflation induced scalar fields motivate the scalar non-Gaussianity. In
Ref. [1], they proposed the model, which can amplify the vacuum fluctuation of a U(1) gauge
field by introducing the coupling between a pseudoscalar field and a gauge field. This enhanced
gauge mode also generates chiral gravitational waves because gravitational waves are sourced by
the energy momentum tensor of chiral gauge field. Because of chiral gravitational waves in this
model, the fluctuations of CMB must have parity violating signals as TB and EB correlations. The
rolling pseudoscalar inflation creates small scalar and large tensor non-Gaussianities [2]. They
studied the effects of parity violation on the CMB temperature auto-bispectrum by using flat-sky
formalism. Based on this formalism, it does not work on large scales where the tensor mode
dominates. Furthermore, it is difficult to know that the parity violating signals, analytically, i.e.,
both the parity-even (`1 +`2 +`3 = even) and parity-odd (`1 +`2 +`3 = odd), if we use the flat-sky
formalism where the ` spaces are not discreet.

In this paper, we present the CMB temperature and polarization bispectra through a full-sky
formalism [3]. By a concrete computation based on full-sky formalism, we presented the CMB bis-
pectra have non-zero parity violating signals in ` space analytically. We estimated the detectability
of the tensor non-Gaussianity for cases with the auto- and cross-bispectra of the CMB temperature
and E-mode polarization and with the auto-bispectrum of the CMB B-mode polarization.

2. Parity violation by a pseudoscalar

In this section, we will show that the gravitational waves become chiral and large tensor non-
Gaussianity is created naturally in the rolling pseudoscalar inflation. In this paper, we focus on a
model where a rolling pseudoscalar field χ couples to U(1) gauge field Aµ in the inflationary epoch.
We consider the inflation model as

L = −1
2

(∂φ)2 −V (φ)− 1
2

(∂ χ)2 −U(χ)− 1
4

FµνFµν −
χ
4 f

F̃µνFµν , (2.1)

where φ and f are an inflaton and a coupling constant between the pseudoscalar and gauge fields,
respectively. And the gauge field strength obeys Fµν = Aµ;ν −Aν ;µ and F̃µν is its dual tensor,
which causes parity violation. V (φ) and U(χ) are the potential of the inflaton and the pseudoscalar
field.

The equation of motion of the gauge field can be written as

A′′−∇2A− χ ′

f
∇×A = 0 , (2.2)
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where we imposed the Coulomb gauge A0 = 0 on the gauge field and ∇ ·A = 0. We denote ′ ≡ ∂τ

which means derivative respect to conformal time. We can solve the above equation of motion by
moving to a quantizetion process in Fourier space as

Ai(τ,x) =
∫ d3k

(2π)3/2 ∑
λ=±1

[
aλ (k)Aλ (τ ,k)+a†

λ (−k)A∗
λ (τ ,−k)

]
ε(λ )

i (k)eik·x , (2.3)

where aλ (k) and a†
λ (k) are ordinary creation and annihilation operators. And ε(λ )

i (k) is a di-
vergenceless polarization vector. This solution of the mode function Aλ with rolling condition
χ̇ = const obeys the Coulomb wave function and whose growing mode is written as

A+(τ,k) ' 1√
2k

(
− kτ

2ξ

)1/4

eπξ−2
√

−2ξ kτ , (2.4)

where ξ = χ̇/(2 f H) and a dot represents a derivative with respect to the coordinate time dt = adτ .
We can understand the parity violation in this model by considering the solution of Aλ , namely, A+

is exponentially amplified by ξ while A− is not amplified by rolling pseudoscalar.
The tensor perturbation δgi j = a2hi j obeys the Einstein equation:

h′′i j +2
a′

a
h′i j −∇2hi j = −2a2

MP
(EiE j +BiB j)

T T , (2.5)

where Ei and Bi are electric and magnetic part of the gauge field. Moreover T T means the traceless
and transverse part of the energy momentum tensor of the gauge field. The gravitational waves
have also chiral property, which are induced by the parity violating sources of the gauge field. To
solve the above equation in Fourier space, we also express hi j by the polarization tensor e±2

i j (k̂),
which is the traceless and transverse tensor, as

hi j(τ,x) =
∫ d3k

(2π)3/2 ∑
λ=±2

h(λ )
k (τ)e(λ )

i j (k̂)eik·x . (2.6)

The solution is given by the Green function as

h(λ )
k (τ) = −2H2

M2
P

∫
dτ ′Gk(τ,τ ′)τ ′2

∫ d3k′

(2π)3/2 d3k′′ 1
2

e(−λ )
i j (k̂)

×
[
Ei(τ ′,k′)E j(τ ′,k′′)+Bi(τ ′,k′)B j(τ ′,k′′)

]
δ (k′ +k′′−k) , (2.7)

where the Green function is given as

Gk(τ,τ ′) =
1

k3τ ′2
[
(1+ k2ττ ′)sink(τ − τ ′)+ k(τ ′− τ)cosk(τ − τ ′)

]
Θ(τ − τ ′) . (2.8)

Ei and Bi correspond to the electric and magnetic part of the gauge field in Fourier space:

Ei(τ,k) ≡ v′+(τ,k)ε(+)
i (k) , (2.9)

Bi(τ,k) ≡ kv+(τ ,k)ε(+)
i (k) . (2.10)
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The tensor bispectrum is evaluated through the above solution and amplified in the equilateral limit
(k1 = k2 = k3) [2], namely〈

3

∏
n=1

h(+2)
kn

〉
kn→k

' 3×10−4P3X3 δ (k1 +k2 +k3)
k6 , (2.11)

where we defined P ≡ H2/(8πεM2
P) and X is the non-gaussian strength parameter, which is de-

fined as

X ≡ ε
e2πξ

ξ 3 , (2.12)

where ε is slow-roll parameter. This is the only parameter in this inflation model. In the detectabil-
ity analysis, we estimate the 1σ errors of this parameter. From numerical evaluation, we confirmed
that the other spin modes are smaller than Eq. (2.11). Consequently, we dropped these ignorable
contributions in this paper.

3. Parity violation in CMB bispectra

In this section, we present results of the CMB temperature and polarization bispectra based on
the full-sky formalism [3]. The CMB anisotropies are quantified through a multipole expansion:

∆X (n̂)
X

= ∑̀
,m

aX
`mY`m(n̂) , (3.1)

where X denotes the temperature (I), E-mode (E) and B-mode (B) fields. The coefficients of the
multipole expansion are given as

aX
`m = 4π(−i)`

∫ ∞

0

k2dk
(2π)3/2 T X

` (k) ∑
λ=±2

(
λ
2

)x ∫
d2k̂h(λ )

k −λY ∗
`m(k̂) , (3.2)

where x corresponds to parities of three modes, namely, parity even component: x = 0 for X = I,E
and parity odd component: x = 1 for X = B, and T X

` is a radiation transfer function, respectively.
The CMB bispectra are expressed as〈

3

∏
n=1

aXn
`nmn

〉
= BX1X2X3

`1`2`3

(
`1 `2 `3

m1 m2 m3

)
, (3.3)

and the CMB bispectra induced by chiral gravitational waves are evaluated as

BX1X2X3
`1`2`3

= −(8π)3/2

10

√
7
3

NP3X3

[
3

∏
n=1

∑
Ln

(−1)
Ln
2 (−i)`nI20−2

`nLn2

]
I0 0 0
L1L2L3


`1 `2 `3

L1 L2 L3

2 2 2


×

∫ ∞

0
r2dr

[
3

∏
n=1

2
π

∫ ∞

0
k2

ndknT
Xn

`n
(kn) jLn(knr)

]
Beq

k1k2k3
, (3.4)

where

Is1s2s3
l1l2l3 ≡

√
(2l1 +1)(2l2 +1)(2l3 +1)

4π

(
l1 l2 l3
s1 s2 s3

)
. (3.5)
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Figure 1: All possible CMB bispectra, i.e., 〈III〉, 〈IIE〉, 〈IEE〉 and 〈EEE〉 (top two panels), and 〈IIB〉,
〈IEB〉, 〈IBB〉, 〈EEB〉, 〈EBB〉 and 〈BBB〉 (bottom two panels). The model parameter is fixed X = 2.1×105

and the primordial power spectrum is P = 2.5× 10−9 for `1 + 2 = `2 + 1 = `3. Left and right two panels
describe the parity-even (`1 + `2 + `3 = even) and parity-odd (`1 + `2 + `3 = odd) components, respectively.
We also plot 〈III〉 and 〈EEE〉 from the equilateral non-Gaussianity with fNL = 150.

Note that we confirmed that the primordial tensor-bispectrum correlates closely with the usual
equilateral template. Hence the primordial tensor-bispectrum can be replaced the usual equilateral
template to compute the CMB bispectra and its normalization factor N is decided numerically
without uncertainly.

We can see the selection rules of the Wigner symbols tells us the non-zero values for both
`1 + `2 + `3 = even and `1 + `2 + `3 = odd. This selection of ` space is induced by parity violat-
ing interaction between the pseudoscalar field and the gauge fields. We depict the CMB reduced
bispectra for `1 ≈ `2 ≈ `3 induced by pseudoscalar in Fig. 1.

From Fig. 1, the amplitude of parity-odd and cross-bispectra are same as that of parity-even
and cross-bispectra. However the amplitude of parity-odd and auto-bispectra are smaller than that
of parity-even and auto-bispectra. Total signal coming from parity-odd bispectra would be sup-
pressed slightly because of the decaying nature at `1 ≈ `2 ≈ `3. Note that the peaks at ` ∼ 100 in
the E- and B-mode polarization are induced by the Thomson scattering.

4. Detectability

In this section, I devote to summarize the detectability analysis, shortly. We evaluate 1σ errors
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III EEE all I +E BBB (r = 0.05) BBB (r = 5×10−4)
Planck 127 (129) 232 (233) 56 (65) 17 (19) 2.1 (2.1)
PRISM 127 (129) 83 (84) 25 (30) 0.87 (1.0) 0.015 (0.017)

ideal 127 (129) 82 (83) 25 (29) 0.12 (0.20) 1.2 (2.0)×10−4

Table 1: Expected 1σ errors of X3 normalized by 1015 in the III only, EEE only, all I + E cases (`max =
1000) and BBB only case (`max = 500) for each experiment. The errors from parity-even signals alone are
written in parentheses.

of the model parameter X3 using Fisher matrix. When the model parameter X3 satisfies X3 .
O(1015), the curvature perturbation induced the chiral gravitational waves is negligible. In this
parameter region, the usual curvature perturbation would coincide the observed primordial power
spectrum. We adopt the Planck and the proposed PRISM experiments to consider the instrumental
noise. We present the 1σ errors of X3 in Table 1.

From Table 1, detectable model parameters in PRISM experiments are as follows. First, X =
5×105 can be detected for cases with I only. Second, when we introduce the additional information
as E (parity-odd and parity-even), X = 2.9×105 is detectable. Furthermore, we use B alone, X =
9.5×104 for the case with r = 0.05 and X = 2.5×104 for the case with r = 5×10−4, respectively.
These results are comparable to or slightly tighter than the IB and EB correlations.

5. Summary

In this paper, we considered the parity-violating CMB bispectra induced by the rolling pseu-
doscalar field. The full-sky formalism informs us of the parity violating signal, i.e., existence of
the both `1 + `2 + `3 = odd and `1 + `2 + `3 = even in ` space, analytically. To compute the CMB
bispectra, we analyzed the shape of tensor non-Gaussianity. We depicted the CMB bispectra for
`1 ≈ `2 ≈ `3. We found that the shape of tensor non-Gaussianity induced by the pseudoscalar
field correlate to usual equilateral type. From these analyzation, we found that the amplitudes of
parity-odd and cross-bispectra are same as that of parity-even and cross-bispectra. However the
amplitudes of parity-odd and auto-bispectra are smaller than that of parity-even and auto-bispectra.

We also analyzed the detectability of the model parameter X using Fisher matrix. If we use
both temperature and E-mode auto- and cross-bispectra, detectability of the model parameter X
is improved of 400% with respect to temperature bispectra alone in the PRISM experiment. Fi-
nally, B-mode bispectrum may be more powerful tools than any other information and these are
marvelous studies to seek the trace of the early universe.
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