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1. Introduction

Multi-leg two-loop amplitudes are of potential importance for precision measurements in the
coming years of high energy proton-proton collisions at the LHC. Improved understanding of IR
subtraction schemes has led to considerable progress in the calculations of full NNLO QCD cor-
rections for 2 — 2 processes. Recent examples of hadronic production of di-jets [1, 2], ¢7 [3, 4], and
VV [5] are reviewed in these proceedings. The double virtual corrections required at this precision
have mainly been obtained using Feynman diagrams together with integration-by-parts identities
[6], but owing to the rapid growth in complexity this approach may not be sufficient to handle
higher multiplicity processes and therefore new techniques are desirable.

Though Feynman diagram technology has been sufficient for a number of two-loop QCD am-
plitudes (those required for di-jets and Higgs plus jet production are arguably the most complicated
amplitudes achieved with this approach [7—11]), on-shell approaches can avoid large intermedi-
ate steps and enable an efficient calculation of more complicated processes. Unitarity [12] and
generalized unitarity [13] techniques have been successfully applied to two-loop QCD amplitudes
for massless 2 — 2 processes [14 —20]. In super-symmetric gauge and gravity theories these tech-
niques are now a familiar technology, with the current state-of-the art computations being able to
handle four and even five loops.

Encouraged by the high levels of automation achieved at NLO, there has been recent progress
in extending unitarity, generalized unitarity and integrand reduction algorithms to allow a system-
atic algebraic approach to arbitrary loop amplitudes. The maximal unitarity approach proposed by
Kosower and Larsen [21] builds upon the method of directly extracting of integral coefficients us-
ing generalized unitrarity cuts. Further developments in this direction are summarized in [22 —29].
The integrand reduction algorithm developed by Ossola, Papadopoulos and Pittau (OPP) [30] has
also been the focus of multi-loop extensions. Initial attempts to extend this method [31, 32] led
to the proposal of the computational algebraic geometry method [33, 34], generalizing the inte-
grand reduction algorithm systematically to all loop orders. A number of different examples have
been considered within this framework [35—41]. Investigations into spinor integration methods at
two-loops are also on-going [42].

It has been interesting to see algebraic geometry play an increasingly important role in under-
standing the details of these methods. Grobner basis and polynomial division techniques allow the
automation of the integrand reduction process, and the tool of primary decomposition characterizes
the structure of the branches of the unitarity-cut solutions.

In these proceedings we review the D-dimensional formulation of the multi-loop integrand
reduction method and present applications to maximal non-planar cuts of the five-gluon all-plus
amplitude in QCD.

2. A D-dimensional integrand reduction algorithm

Our approach to D-dimensional integrand reduction has been developed during the compu-
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tation of the five-gluon all-plus helicity amplitude in QCD [41]. A summary of the approach
has recently been presented in the proceedings of ACAT 2013 [43], so we will only give a very
schematic overview here.

A D =4 —2¢ dimensional L loop amplitude depending on a set of external momenta {p} and
internal momenta {k} has the generic form:

b Lo N )
iy /HM L2 D (k) p)) D

where D; are the denominators of the loop propagators. The master numerator function N may

be obtained from Feynman diagrams or by off-shell recursive techniques. Alternatively, N can be
written as the product of tree-level amplitudes when generalized unitarity cuts are applied to the
propagators. The goal of the integrand reduction procedure is to write a loop amplitude in the form:
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(2.2)
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where x;; and ;; are 4 and —2¢& dimensional irreducible scalar products (ISPs) that must be iden-
tified. To achieve this we use the polynomial division algorithm proposed by Zhang [33] in D-
dimensions:

1. Choose a maximal propagator topology from the list of un-computed topologies.

2. Choose a set of momenta, v;, spanning the space of external momenta.

3. Change the propagator equations into scalar product variables x;; = ki-v jand (;; = kl[_2£] .

kgfzg] using the 4 x 4 Gram matrix, G4(v), to give a set of equations: Py (x;ij, ;).

4. Separate the reducible scalar products from the irreducible scalar products using the linear
parts of the propagator equations, (P) = (Pyuadratic) U (Plincar) -

5. Use polynomial division by the Grobner basis of the ideal (Pyuadratic) to define the integrand
parametrization Ay = Y; ¢;m;(x;j, i4;;) in terms of ISP monomials m;.

6. Use primary decomposition of the algebraic variety Z(P) to reduce the unitarity-cut solu-
tions to irreducible branches. Solve the on-shell equations at each branch using an explicit
parametrization of k") (t,).

7. Use Ar (kW) = Y djm/, (1) = N(k®)) — X7 Ap (k) = TTAQ (k) — X7 A7 (k1)) to compute
the residues d; from the input (e.g. tree-level amplitudes, diagrams, etc). The sum runs over
all (previously computed) topologies with higher number of propagators.

8. Solve the master system M - ¢ = d for the coefficients ¢; where,

Zdjm;-(fa Zc,m, (xij(Ta)s Mij(Ta)) Z (2.3)
J
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9. Go back to 1 until all topologies are computed.

Steps 2-5 above are implemented in Zhang’s BASISDET Mathematica package [33].

There are a few important comments to make about this approach. Firstly there is an ambiguity
as to which spanning basis vectors v; to choose and we notice in a number of examples that a good
choice can result in a considerably more compact integrand representation. Secondly, step 6 can
be efficiently performed using the primary decomposition algorithm implemented in MACAULAY2
[44]. In D-dimensions it is possible to prove that all propagator ideals are radical ideals and there-
fore admit exactly one on-shell solution branch. Thirdly, in step 5 we must provide an ISP ordering
to define the polynomial division. Any choice will result in a valid integrand representation but also
here the choice will affect the analytic form considerably. A feature of D-dimensional systems is
that we may elect to remove monomials of the extra dimensional ISPs y;; in terms of monomials of
the four dimensional ones x;;. In certain circumstances this can result in a D-dimensional integrand
basis which does not have a smooth limit onto the four dimensional case, and this is a feature which
is highly undesirable and may require some additional manipulation after the polynomial division
has been performed.

3. Simplifying kinematics with momentum twistors

The four-component momentum twistors, first introduced by Hodges [45], is Z(p;) = Zi =
(i, Miq) for a massless momentum p;, where A;, are the two-component holomorphic Weyl
spinors (a = 1,2). u; are the dual variables which are used to construct the anti-holomorphic
spinors:

(fia Aid) = gd.,b,.c,dZi—.l,b.Zf',cZi-i-Ld
(i—1,i)(i,i+1)

While for four-point kinematics the minimal set of variables can be written in terms of Mandelstam

Wia = 3.1

invariants, the five-point case is complicated by a non-trivial Gram matrix identity relating the
square of the trace operator including 75 to the invariants,

trs(1234)% = 16detG<”l P2 p3 p“) : (3.2)
P1 P2 P3 P4
This relation is satisfied explicitly after a transformation to the momentum twistor variables, x;:
11 11 1 1
PO & tme utan T
011 1 1
Z= . 33
000 = 1 (3-3)
2
001 1 11— ;—j
The variables x; can be expressed in terms of the usual spinor products and kinematic invariants as:
$23 5123
X1 =3S812, X4 = —, Xs = —,
S12 S12
23)(41 34)(51
o3 NRCUIEY o
(12)(34) (13)(45)
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(a) The topology (332). (b) The topology (422).

Figure 1: Maximal cut non-planar topologies for five-point amplitudes.

By converting expressions to these variables during step 7 of the algorithm, we can automatically
express the Feynman diagram input as compact analytic expressions for the d; coefficients.

4. Example: non-planar maximal cuts of five-gluon all-plus helicity amplitude

There are two independent non-planar topologies for massless five-point amplitudes as de-
picted in figure 1. We label each topology by the number of propagators along each of the three
loop momentum branches ki, k> and kj + k; so topology (a) is 332 and (b) is 422.

4.1 The 332 topology
This topology is defined by the propagators:
{ki, ki = p1, ki = p1— p2, k2, ko — pa, ko — p3 — pa, ki + ko, ki + ko + ps}. 4.1

A good choice for the spanning basis turns out to be v = {5,1,4,2} which, using a lexicographic
ordering, gives a generic basis of 82 monomials under the renormalization constraints {5,5,6}.
The BASISDET code is rather simple and reads:

L=2;
Dim=4-2\ [Epsilon];
n=5;
ExternalMomentaBasis = {p5, pl, p4, p2};
Kinematics = {
pl”2 —> 0, p2°2 -> 0, p4”*2 -> 0, p5°2 -> 0,
pl*p2 -> s12/2, plxp3 -> (s45-s12-s23)/2, pl*pd —-> (s23-s15-s45)/2, pl*xp5 -> sl5/2,
p2+p3 —-> s23/2, p2xpd4 -> (s15-s23-s534)/2, p2*p5 —-> (s34-s12-s15)/2,
p3*p4 —> s34/2, p3%xp5 -> (sl2-s34-s45)/2,
pd*xp5 —-> s45/2
bi
numeric = {sl2 -> 11, s23 -> 17, s34 -> 7, s45 -> 3, sl5 -> 29};
Props = {11, 11 - pl, 11 - pl - p2, 12, 12 - p4, 12 - p3 - p4, 11 + 12 + p5 , 11 + 12};
RenormalizationCondition = {{{1, 0}, 5}, {{0, 1}, 5}, {{1, 1}, 6}};
GenerateBasis[0]
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The on-shell loop momenta are conveniently parametrized in terms of 3 free variables:

B = e (P2 o 1], 42)
K =pi+1 << >>< 7+ 14]+ << >><4W”H 4.3)
where
—S14 1 1
B= w (1350) <s15 + 545+ g(“ tr_(1523) + 1 try (1523)) + o tr_(1453)> N S

We can then construct a linear system of 82 x 83 to fit the integrand coefficients. In the case of the
5-gluon all-plus amplitude the situation is much simpler than this general parametrization suggests,
and we find that only three independent ISP monomials are present with a structure similar to that
of the planar case [41]. The result is:

2iF) 512534

A8;332(1+?2+’3+’4+’5+):< 12)(23)(34)(45)(51) trs

(c1ky - pa+caky-pr+c3ki-ps), (4.5)

1 = —si5tr_(2345), (4.6)
Cp = Sy5tr_ (2351), “4.7)
C3 = 8523545515 — S151r— (2345) — Sy5tr— (2351), (4.8)

Fi = (Ds—2) (11 fo2 + Hoopias + aspinn) +4(Uh — 4uni i), (4.9)

where Usz = Uy + Uiz + Uz, and Dy = g““ is the spin dimension.

4.2 The 422 topology

This topology is defined by the propagators:

{k1, ki = p1, ki = p1 — p2, ki — p1 — p2 — p3, k2, ko — pa, ki + ko, ki +ka + ps}, (4.10)

and again in this case we use v = {5,1,4,2}. To make the four-dimensional limit of the integrand
representation manifest we must make some replacements to the monomial list. One possible

change is:
4 4 3 3 2 2
Xpp =7 Xpp 22, Xpp =7 Xpp H22, Xop > Xpp i1,
3 3 2 2
X24X2) —> X24X77 U22, X24X5) = X24X7o U220, X24X22 —> X24X22 H11,
2
X21X22 = X21X22 55 “4.11)

The on-shell solution can be parametrized as:

. (23) 23]
B = ol g (124 (1= )y I “.12)
15)

(15)
e 3y O 14 @13

K =PBry+m 4]+ oy
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where

1
B=-— (s13515 4 71 tr_(1523) + (1 — 1) tr (1523)). (4.14)
545813

Inverting the resulting 65 x 76 linear system gives a simple representation for the all-plus helicity

configuration:
Agazy = i 512573545 (co+2c1ky - ps) (4.15)
8422 = 112)(23) (34) (45) (5 1) trs O 1P '
CO = 515534545, (4.16)
¢ = —tr, (1345). @.17)

where Fj refers to eq. (4.9).

As observed in the case of the planar topologies [41], these non-planar contributions also
have compact representations for the all-plus configuration. Though more general QCD helicity
amplitudes will be significantly more complicated, we hope that the techniques presented here will
help to make these computations possible in the near future.
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