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On the QCD cusp anomalous dimension Johannes M. Henn

1. Introduction

The cusp anomalous dimension is an ubiquitous quantity in gauge theories. It governs the
dependence of the cusped Wilson loop on the ultraviolet cut-off [1] and appears in many physical
quantities, e.g. it controls the infrared asymptotics of scattering amplitudes and form factors in-
volving massive particles [2, 3]. The two-loop result for this fundamental quantity has been known
for more than 25 years [4]. Here we report on a calculation of thenf -dependent contribution to the
cusp anomalous dimension in QCD at three loops.

2. Overview of results in N = 4 SYM and QCD

Recent years have seen a lot of progress in understanding thecusp anomalous dimension in
N = 4 supersymmetric Yang-Mills (SYM), where perturbative results are available to three and
four loops, including part of the non-planar corrections which first appear at four loops [5].1 The
cusp anomalous dimension takes a particularly simple form in N = 4 SYM and it can be organized
according to the transcendental weight of contributing functions. In this section, we review these
results in order to compare them to the QCD answer.

The most natural Wilson loop operator to consider inN = 4 SYM has an additional coupling
to scalars [6] depending on a unit vectornI in the internalS5 space,(nI )2 = 1, and an auxiliary
parameterσ

Wσ = 〈0| tr

[

Pexp

(

i
∮

C
dx·A(x)+σ

∮

C
d|x|nI φI (x)

)]

|0〉 . (2.1)

For σ = 1, the Wilson loopWσ=1 locally preserves supersymmetry whereas forσ = 0 it coincides
with the conventional Wilson loop with only coupling to gluons as in QCD.2 We will refer to the
σ = 1 andσ = 0 cases as the supersymmetric and bosonic Wilson loop, respectively.

To compute the cusp anomalous dimension, we consider an integration contourC formed by
two segments along space-like directionsvµ

1 andvµ
2 (with v2

1= v2
2 = 1), with cusp angle cosφ = v1 ·v2

(cf. Fig. 1). In addition, we take the vectorsnI
1 andnI

2 to be constant along the segments except
the cusp point where they form an additional internal angle cosθ = nI

1nI
2. The cusp anomalous

dimension depends on the cusp anglesφ andθ . It turns out to be convenient to introduce complex
variables

x= eiφ , ξ = (cosθ −cosφ)/(i sinφ) (2.2)

The dependence of the cusp anomalous dimension onξ is polynomial. For simplicity of notation,
let us setθ = π/2 from now on, i.e.ξ = (1+x2)/(1−x2).

1Obviously, the perturbative regime is most relevant for thecomparison with QCD. However, we would also like to
mention that results are available at strong coupling [6], via the AdS/CFT correspondence. Moreover, exact results are
known in the small angle regime [7], and there is an approach based on integrability, cf. [8] and references therein. The
cusp anomalous dimension can also be obtained from the Reggelimit of certain massive scattering amplitudes [9].

2It is not known at present whether integrability extends to this case.
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v1 v2

φ

Figure 1: Sample Feynman diagram producing annf dependent contribution to the three-loop cusp anoma-
lous dimension in QCD. Thick lines denote two semi-infinite segments forming a cusp of angleφ . Wavy
lines stand for gauge fields and the thin circle for a quark loop.

The two-loop results for the Wilson loop operatorsWσ=1 andWσ=0 in N = 4 SYM are3

Γsusy WL
SYM =aA(1)(φ)+a2 A(2)(φ) , (2.3)

Γbosonic WL
SYM =a

[

A(1)(φ)−A(1)(0)
]

+a2
[

A(2)(φ)−A(2)(0)+B(2)(φ)−B(2)(0)
]

, (2.4)

wherea= g2N/(8π2) is the ’t Hooft coupling and

A(1)(φ) =−ξ logx,

B(2)(φ) =2ζ2+ log2 x−ξ
[

ζ2+ log2x+2Li1(x
2) logx−Li2(x

2)
]

, (2.5)

A(2)(φ) = ξ
[

2ζ2 logx+
1
3

log3 x

]

−ξ 2
[

ζ3+ζ2 logx+
1
3

log3 x+Li2(x
2) logx−Li3(x

2)

]

.

Eq. (2.3) is due to the last ref. in [4], while to the best of ourknowledge eq. (2.4) is new. Note
that although each of the functions (2.5) has uniform weight1,2 and 3, respectively, they produce
a ‘weight drop’ contribution when evaluated at zero angle,A(1)(0) = 1, B(2)(0) = −2+ 2ζ2, and
A(2)(0) = 1−2ζ2.

Interestingly, the cusp anomalous dimension for the bosonic Wilson loop inN = 4 SYM
differs only slightly from the supersymmetric one. Moreover, the functionB(2) is related to a
derivative ofA(2), if one considersξ andx as independent variables,

B(2) =
1
ξ

∂
∂ logx

A(2) . (2.6)

Using relations (2.5), we can rewrite the known two-loop result for the QCD cusp anomalous

3The supersymmetric results quoted here are valid in the DREDscheme, while formulas in QCD will be given in
theMS scheme. See Appendix A of ref. [10] for a discussion of the scheme conversion up to two loops.
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dimension in a new way, in terms of the simple functions encountered inN = 4 SYM,

Γ(1)
QCD =CF

[

A(1)(φ)−A(1)(0)
]

, (2.7)

Γ(2)
QCD =

1
2

CFCA

[

A(2)(φ)−A(2)(0)+B(2)(φ)−B(2)(0)
]

+

(

67
36

CFCA−
5
9

CFTf nf

)

[

A(1)(φ)−A(1)(0)
]

, (2.8)

where the expansion parameter isαs/π, CF andCA are quadratic Casimirs of theSU(N) gauge
group in the fundamental and adjoint representation, respectively, nf is the number of quark flavours
andTf = 1/2.

3. Uniform weight functions and computation of the master integrals

Why should uniform weight functions play such an important role for the cusp anomalous
dimension? In fact, the perturbative expansion of a cusped Wilson loop (2.1) gives rise to distinct
Feynman integrals which are already very close to the definition of iterated integrals [11]. In the
third reference of [5], this observation was used to give an algorithm for computing any Wilson line
integral with an arbitrary number of propagator exchanges (but no internal vertices).4 For the full
computation we require a larger class of integrals that includes graphs with interaction vertices. A
method which exposes the weight properties of such integrals was proposed in [13], and we used
it for our computation.

Since the three-loop cusp anomalous dimension does not receive nonplanar corrections, it can
be expressed in terms of planar integrals only. We choose to perform the calculation in momentum
space, using the heavy quark effective theory framework [3]. The integrals can all be parametrized
as (withD = 4−2ε)

Ga1,...,a12 =e3εγE

∫

dDk1dDk2dDk3

(iπD/2)3
(−2k1 ·v1+1)−a1(−2k2 ·v1+1)−a2(−2k3 ·v1+1)−a3

× (−2k1 ·v2+1)−a4(−2k2 ·v2+1)−a5(−2k3 ·v2+1)−a6(−k2
1)

−a7

× (−(k1−k2)
2)−a8(−(k2−k3)

2)−a9(−(k1−k3)
2)−a10(−k2

2)
−a11(−k2

3)
−a12 , (3.1)

for certain choices of positive/negative integersai . Applying the integral reduction algorithms [14],
we found that 71 master integrals are required in total.5 We then used the method proposed in ref.
[13] to choose a convenient basis for the latter, denoted by~f (x,ε). A distinguished feature of this
basis is that the~f (x,ε) satisfy the differential equations of the form (D = 4−2ε)

∂x~f (x,ε) = ε
[

a
x
+

b
x+1

+
c

x−1

]

~f (x,ε) , (3.2)

with constant (x− and ε−independent) matricesa,b,c. We see that eq. (3.2) has four regular
singular points, 0,1,−1,∞. Due to thex↔ 1/x symmetry of the definition 2cosφ = x+1/x, only
the first three are independent. They correspond, in turn, tothe light-like limit (infinite angle), to
the zero angle limit, and to the threshold limit. See ref. [5]for further discussion of these limits.

4A different computation of some of these integrals is discussed in [12].
5A subset of these integrals that reduce to a one-loop triangle with ε-dependent indices was computed in ref. [16].
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v1 v2k1 k2

k1−k2

k2−k3

Figure 2: Diagrammatical representation of the basis integralf44 discussed in the main text. Thin lines
denote scalar propagators. One of the propagators is doubled, and a normalization factor is not shown in the
figure.

Solving (3.2) we use boundary conditions for~f (x,ε) at x = 1. All ~f (1,ε) except one can
be easily obtained from consistency conditions, i.e. absence of unphysical singularities, and the
remaining constant can be found by comparing to refs. [17]. If follows immediately from (3.2) that
the solution for~f in the from ofε−expansion can be written in terms of harmonic polylogarithms
[18]. In this way, we obtained an analytic answer in terms of uniform weight functions for all
integrals required. As an example, we consider one of the master integrals

f44 = ε51−x2

x
G1,0,1,0,1,0,1,1,2,0,1,0 = ε4

[

−
1
6

π2H0,0(x)−
2
3

π2H1,0(x)−4H0,−1,0,0(x)

+2H0,0,−1,0(x)+2H0,1,0,0(x)−4H1,0,0,0(x)+4ζ3H0(x)−
17π4

360

]

+O(ε5) . (3.3)

We performed numerical checks on all integrals using FIESTA[19], and analytically reproduced
results for three-loop integrals known from theN = 4 SYM computation [5]. More details will be
discussed elsewhere.

4. Three-loop cusp anomalous dimension in QCD

To compute the cusp anomalous dimension, we started with thedefinition of the bosonic Wil-
son loop (2.1) in QCD, and generated all Feynman diagrams contributing toWσ=0 up to three loops,
in an arbitrary covariant gauge. This was done with the help of the computer programs QGRAF and
FORM [15]. Thenf−dependent contribution only comes from diagrams with quarks propagating
inside the loops. They can be evaluated within dimensional regularization using standard methods,
details will be given elsewhere.

The cusp anomalous dimensionΓ can be extracted from the divergent part of the one-particle
irreducible vertex functionV(φ) of the heavy-to-heavy current [3] (e.g., the diagram in Fig.1
without the external leg propagators),

logV(φ)− logV(0) = logZ+O(ε0) , Γ =
d logZ
d logµ

. (4.1)
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In theMS scheme, the renormalizationZ−factor has the following structure

logZ =−
1
2ε

(αs

π

)

Γ(1)+
(αs

π

)2
[

β0

16ε2 Γ(1)−
1
4ε

Γ(2)
]

+
(αs

π

)3
[

−
β 2

0 Γ(1)

96ε3 +
β1Γ(1)+4β0Γ(2)

96ε2 −
Γ(3)

6ε

]

, (4.2)

where theµ−dependence only enters through the renormalised coupling constant [20], d
d logµ

( αs
4π
)

=

−2ε
( αs

4π
)

−2β (αs). As a non-trivial check of our calculation we verified that eq. (4.2) indeed re-
produces the pole structure of logV(φ) at three loops.

At three loops, the cusp anomalous dimension has the following form by virtue of non-Abelian
exponentiation,

Γ(3)
QCD = c1CFC2

A+c2CF(Tf nf )
2+c3C2

FTf nf +c4CFCATf nf . (4.3)

For thenf dependent terms, we obtained the following results,

c2 = −
1
27

[

A(1)(φ)−A(1)(0)
]

,

c3 =

(

ζ3−
55
48

)

[

A(1)(φ)−A(1)(0)
]

, (4.4)

c4 = −
5
9

[

A(2)(φ)−A(2)(0)+B(2)(φ)−B(2)(0)
]

−
1
6

(

7ζ3+
209
36

)

[

A(1)(φ)−A(1)(0)
]

.

with the functionsA(1), A(2) andB(2) given in eq. (2.5).
The following comments are in order. The leadingn2

f term in (4.3) is in agreement with the
known result [21]. The expressions for the coefficientsc3 andc4 in the subleadingnf terms are
new (c3 can be obtained by generalizing the method of the last ref. of[3]).

As yet another check of our result, we can take the light-likelimit of (4.3), where one expects
[22] the behavior limx→0 Γ → K(αs) log(1/x), with K at three loops computed in refs. [23]. Again,
we observed a perfect agreement for thenf dependent terms.

It is remarkable that despite the relative complexity of theFeynman integrals (3.1), the final
expressions (4.4) are surprisingly simple! Moreover, theyare expressed in terms of the same func-
tions that appear in theN = 4 SYM answer. It will be interesting to see whether this is also the
case for theCFC2

A term. This calculation is work in progress.

5. Discussion

The simplicity of eqs. (4.4) suggests that there should be a simpler way of arriving at these
results. Ignoring technical details such as the intrinsic renormalization of the Lagrangian and the
associatedβ function, morally speaking there should be a way of organizing the calculation in
terms of manifestly finite integrals in four dimensions, as in ref. [24]. This would very likely require
only a (simpler) subset of functions as compared to the calculation inD = 4−2ε dimensions.

A related comment is that when computing integrals via differential equations, usually one
proceeds in a “bottom-up” approach: one starts with the integrals with few propagators, e.g. a
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tadpole integral, when proceeds with bubbles, and so on. Letus now imagine a scenario where,
through some means, one knows the answer forN = 4 SYM. The integrals required forN = 4
SYM are typically the ones with maximal number of propagators, thanks to its good ultraviolet
properties. In the traditional approach, one arrives at them only at the very end, and therefore they
obviously contain a lot of information. Given this, it is interesting to ask whether one can use this
information in a “top-down” approach, and how many of the master integrals required for QCD are
determined by it.

Acknowledgments

We wish to thank R. N. Lee for his help in using LiteRed, and K. G. Chetyrkin, M. Stein-
hauser and V. Smirnov for helpful conversations. We are alsograteful to several institutes that
have provided hospitality to some of us during scientific visits in the course of this work, namely
IPhT Saclay, the Karlsruhe Institute of Technology (KIT), and the Institute for Advanced Study,
Princeton. A.G.’s work was supported by RFBR grant 12-02-00106-a and by the Russian Ministry
of Education and Science. J.M.H. is supported in part by the DOE grant DE-SC0009988 and by
the Marvin L. Goldberger fund. G.P.K. is supported in part bythe French National Agency for
Research (ANR) under contract StrongInt (BLANC-SIMI-4-2011). P.M. was supported in part by
the DFG through the SFB/TR 9 “Computational Particle Physics” and the EU Networks LHCPHE-
NOnet PITN-GA-2010-264564 and HIGGSTOOLS PITN-GA-2012-316704.

References

[1] A. M. Polyakov, Nucl. Phys. B164, (1980) 171; R. A. Brandt, F. Neri and M. Sato, Phys. Rev. D24
(1981) 879.

[2] G. P. Korchemsky and A. V. Radyushkin, Phys. Lett. B171 (1986) 459; Phys. Lett. B279 (1992) 359.

[3] M. Neubert, Phys. Rept.245 (1994) 259; A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys.
Nucl. Phys. Cosmol.10 (2000) 1; A. G. Grozin, Springer Tracts Mod. Phys.201 (2004) 1.

[4] G. P. Korchemsky and A. V. Radyushkin, Nucl. Phys. B283 (1987) 342; N. Kidonakis, Phys. Rev.
Lett. 102 (2009) 232003; N. Drukker and V. Forini, JHEP1106 (2011) 131.

[5] D. Correa, J. Henn, J. Maldacena and A. Sever, JHEP1205 (2012) 098; J. M. Henn and T. Huber,
JHEP1211 (2012) 058; J. M. Henn and T. Huber, JHEP1309 (2013) 147.

[6] J. M. Maldacena, Phys. Rev. Lett.80 (1998) 4859; N. Drukker, D. J. Gross and H. Ooguri, Phys. Rev.
D 60 (1999) 125006; V. Forini, JHEP1011 (2010) 079.

[7] D. Correa, J. Henn, J. Maldacena and A. Sever, JHEP1206 (2012) 048; B. Fiol, B. Garolera and
A. Lewkowycz, JHEP1205 (2012) 093.

[8] D. Correa, J. Maldacena and A. Sever, JHEP1208 (2012) 134; N. Drukker, JHEP1310, 135 (2013);
N. Gromov and A. Sever, arXiv:1207.5489 [hep-th]; Z. Bajnok, J. Balog, D. H. Correa, Á. Hegedüs,
F. I. Schaposnik Massolo and G. Zsolt Tóth, JHEP1403 (2014) 056.

[9] J. M. Henn, S. G. Naculich, H. J. Schnitzer and M. Spradlin, JHEP1004 (2010) 038;

[10] A. V. Belitsky, A. S. Gorsky and G. P. Korchemsky, Nucl. Phys. B667 (2003) 3.

[11] K. -T. Chen, Bull. Am. Math. Soc.83 (1977) 831.

7



P
o
S
(
L
L
2
0
1
4
)
0
1
6

On the QCD cusp anomalous dimension Johannes M. Henn

[12] E. Gardi, talk at Loops and Legs 2014; L. Magnea, talk at Loops and Legs 2014.

[13] J. M. Henn, Phys. Rev. Lett.110 (2013) no. 25, 251601.

[14] A. V. Smirnov, JHEP0810 (2008) 107; R. N. Lee, arXiv:1212.2685 [hep-ph]; P. Marquard, D. Seidel,
unpublished.

[15] P. Nogueira, J. Comput. Phys.105 (1993) 279; J. A. M. Vermaseren, math-ph/0010025.

[16] A. G. Grozin and A. V. Kotikov, arXiv:1106.3912 [hep-ph].

[17] A. G. Grozin, JHEP0003 (2000) 013; K. G. Chetyrkin and A. G. Grozin, Nucl. Phys. B666 (2003)
289.

[18] E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725; D. Maître, Comput. Phys.
Commun.174 (2006) 222.

[19] A. V. Smirnov and M. N. Tentyukov, Comput. Phys. Commun.180 (2009) 735.

[20] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B400 (1997) 379.

[21] M. Beneke and V. M. Braun, Nucl. Phys. B454 (1995) 253.

[22] G. P. Korchemsky, Mod. Phys. Lett. A4 (1989) 1257; G. P. Korchemsky and G. Marchesini, Nucl.
Phys. B406 (1993) 225.

[23] A. Vogt, Phys. Lett. B497 (2001) 228; C. F. Berger, Phys. Rev. D66 (2002) 116002; S. Moch,
J. A. M. Vermaseren and A. Vogt, Phys. Lett. B625 (2005) 245.

[24] S. Caron-Huot and J. M. Henn, JHEP1406 (2014) 114.

8


