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We consider power corrections due to a finite top-quark mass Mt to the production of a Higgs bo-

son pair within the Standard Model at next-to-leading order (NLO) in QCD. Previous calculations

for this process and at this precision were done in the limit of an inifinitely heavy top quark. Our

results for the inclusive production cross section at NLO include terms up to O
(

1/M12
t

)

.

We present the Mathematica package TopoID which for arbitrary processes aims to perform

the necessary steps from Feynman diagrams to unrenormalized results expressed in terms of mas-

ter integrals. We employ it for advancing in this process towards next-to-next-to-leading order

(NNLO) where further automatization is needed.
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1. Introduction

Its is still an open question whether the scalar particle discovered by ATLAS and CMS [1,

2] at CERN is indeed the Higgs boson of the Standard Model (SM). In forthcoming years its

couplings to the various gauge bosons and fermions will be measured with improved precision

to verify their compatibility with the values dictated within the SM. But to gain insight into the

mechanism of electroweak symmetry breaking the particles self-interactions need to be probed,

too. The process granting this possibility is production of a Higgs boson pair via gluon fusion

which has two contributions: One where both Higgs bosons couple to top quarks, the other one

involves the cubic coupling λ of the SM Higgs potential (see fig. 3)

V (H) =
1

2
m2

HH2 +λvH3+
1

4
λH4, (1.1)

with the Higgs mass mH , vacuum expectation value v, and λ = m2
H/2v2 ≈ 0.13 for the SM. Note

that the influence of the second contribution is strongly suppressed compared to the first one, but be-

comes noticeable through its large destructive interference. The process has a relatively small cross

section and suffers from large backgrounds, making the extraction of the Higgs self-interaction at

the LHC a challenge. However, a number of studies suggest the prospect of measuring λ [4, 3, 5, 6],

some within an accuracy of about 30% with at least 3000 fb−1 accumulated luminosity [5, 6].

The leading order (LO) result with exact dependence on the top quark mass Mt has been known

since long [7, 8]. Further terms in the perturbation series have been computed in the approxima-

tion of an infinitely heavy top quark Mt → ∞ at NLO [9] and just recently at NNLO [10]. It is

important to remark that doing so, the exact LO result has been factored off in the NLO and NNLO

contributions.

2. Results

It is known that the 1/Mt expansion works extremely well for the case of a single Higgs boson

[11, 12, 13] employing the aforesaid factorization procedure. For that reason we computed for

double-Higgs production at NLO power corrections due to a finite top quark mass to the total cross

section in the following way:

σ NLO
expanded → σ LO

exact

σ NLO
expanded

σ LO
expanded

, (2.1)

where numerator and denominator are expanded to the same order in 1/Mt . In [14] we presented

results expanded up to O
(

1/M8
t

)

and in [15] to O
(

1/M10
t

)

, here they are available to O
(

1/M12
t

)

.

The discussion of results has not changed by including the new terms. Therefore we only want to

show updated plots for the hadronic cross section, see fig. 1 and fig. 2 and summarize our findings.

• The common enhancement by gluon luminosity of low-ŝ contributions, for which we observe

good convergence, enlarges the validity range of the expansion.

• Including 1/Mt corrections is necessary to detect deviations in λ of O (10%).
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Figure 1: NLO contribution (without LO) to the hadronic cross section. The color coding indicates higher

expansion orders in ρ = m2
H/M2

t .
√

scut, a cut on the partonic ŝ, can be seen as an approximation for the

invariant mass of the Higgs pair.
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Figure 2: The straight black line shows the hadronic NLO cross section up to O
(

ρ6
)

, the dashed black lines

indicate the variation from changing the SM value of λ within ±20%. The yellow and the blue band show

the theoretical uncertainty by taking the difference to the O
(

ρ5
)

and to the O
(

ρ3
)

expansion, respectively.
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σtot. (gg → HH) ∼ Disc.(M (gg → gg))

∫
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Figure 3: For Higgs boson pair production we only need to consider cuts (denoted by short dashed vertical

lines) through two Higgs bosons (long dashed black lines) and additional partons (beginning at NLO). This

correspondence is depicted here for the LO order contributions. Curly red lines represent gluons, straight

blue lines massive top quarks.

• Compared to the prediction in the Mt → ∞ limit we obtain for the LHC at 14 TeV

σ NLO(pp → HH) = 19.7LO +19.0NLO, Mt→∞ fb

→ σ NLO(pp → HH) = 19.7LO +(27.3±5.9)NLO, 1/M12
t fb, (2.2)

where no cut on the partonic center-of-mass energy ŝ was applied and equal factorization and

renormalization scale µ = 2mH was chosen.

• This can be either seen as an improvement of current precision with corrections of about

20% or at least as reliable error estimate for a NLO computation of this process.

3. Techniques

Being interested mainly in the total cross section gg → HH , we can make use of the op-

tical theorem (see, e.g., [16]) and compute imaginary parts or discontinuities of the amplitude

M (gg → gg) related to a Higgs pair instead of squaring M (gg → HH) and performing the phase

space integration (see fig. 3). On the one hand this method simplifies the calculation, namely:

forward scattering kinematics, common treatment of contributions related to different phase space

integrations and computation of the latter only in the very end at master integral level. On the other

hand, one has to compute a larger number of diagrams with more loops.

The second ingredient making this calculation feasible is the asymptotic expansion at diagram-

matic level (see, e.g., [17]) in the hierarchy M2
t ≫ ŝ,m2

H which corresponds to a series expansion of

an analytic result in the parameter ρ = m2
H/M2

t . This procedure effectively reduces the number of

loops and scales in the integrals to be evaluated (see fig. 4), thus diminishing some of the drawbacks

connected to use of the optical theorem.

Within this framework our toolchain for the various steps of the calculation looks as follows:

1. generation of Feynman diagrams with QGRAF [18],

2. selection of diagrams which have the correct cuts [19],

3. asymptotic expansion with q2e and exp [20, 21],
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(M2
t ,m

2
H ,s)

−→

(M2
t )

×

(m2
H ,s)

×

(M2
t )

Figure 4: Applying the rules for asymptotic expansion to a single Feynman diagram one obtains in general a

sum of contributions (there is only one in this example). Each contribution in turn is a product of subgraphs

(containing the hard scale; M2
t in our case) and co-subgraphs (containing the soft scales; m2

H , s). The notation

is as in fig. 3.

4. reduction to scalar integrals in FORM [22, 23] and/or TFORM [24],

5. reduction to master integrals by rows [19] and/or FIRE [25, 26],

6. minimization of the set of master integrals [19].

Step 2 is necessary since one cannot steer QGRAF in such a way that only diagrams with a spe-

cific cut structure are generated. Because of that we filter the diagrams provided by QGRAF for

those which exhibit an appropriate cut in the s-channel corresponding to an interference term from

squaring the amplitude for gg → HH . (Usually only about 10-30% of the initial diagrams pass the

filter.) At NLO step 4 turned out to be the bottleneck of the calculation for going to higher orders

in the expansion parameter ρ .

4. TopoID

Up to now the input for steps 3-6 in the above list was usually provided manually. For going

beyond NLO we use TopoID to provide all that information in an automatic fashion. More pre-

cisely: all the graphs corresponding to a topology as “mapping patterns” for step 3, FORM code

processing aforementioned topologies in step 4 and definitions of topologies suitable for reduction

with the programs listed for step 5.

When performing a multi-loop calculation one often works with a set of topologies and within

each topology integrals are reduced to a finite set of master integrals. The same master integral may

thus be represented in different ways by single integrals of various topologies. TopoID is capable

of providing such an identification, as are recent versions of FIRE [26]. Moreover, there exist also

non-trivial linear relations involving multiple “master integrals” which can be found with the help

of this package (step 6).

A diagram class or family T , usually referred to as topology, is a set of N scalar propagators

{di} with arbitrary powers {ai}, usually referred to as indices, composed of masses {mi} and line

momenta {qi}. The line momenta {qi} are linear combinations of E external momenta {pi} and I
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Figure 5: Sample one-loop topologies appearing after asymptotic expansion at LO, NLO and NNLO (the

last two). The first graph is an example of a linearly independent, but incomplete topology. The second

topology is a linearly independent and complete. The last two topologies, one planar, one non-planar, are

linearly dependent and complete. Plain black lines are massless, the double lines carry the Higgs mass.

internal momenta {ki} with integers ci j, di j,

T (a1, . . . ,aN) =

{

I

∏
i=1

∫

dkD
i

}







N

∏
j=1

1
[

m2
j +q2

j

]a j







, (4.1)

qi =
E

∑
j=1

ci j p j +
I

∑
j=1

di jk j. (4.2)

For particular kinematics, i.e. given external and internal momenta, supplemented by possible

constraints, e.g. putting particles on-shell, one can form all occuring scalar products

xpi p j
= pi · p j, spi p j

= pi · pk, skik j
= ki · k j. (4.3)

If the denominators of a topology {di} allow for expressing each of the internal scalar products

si j the topology is complete, otherwise incomplete. In the latter case affected scalar products are

called irreducible scalar products and appear only as numerators (fig. 5 shows some examples for

Higgs pair production).

Diagram topologies, i.e. mapping patterns for Feynman diagrams, in general are incomplete

and also linearly dependent, viz. linear relations among the {di} exist. In contrast, reduction

topologies need to be linearly independent and complete. This is exemplified in fig. 6 with the two-

loop topologies emerging after asymptotic expansion of the purely virtual five-loop diagrams at

NNLO1. The mapping between these two types of topologies can in general become quite intricate

for larger sets but is handled easily by TopoID.

The foundation of this automatization is the α-representation of Feynman integrals

T (a1, . . . ,aN) = c

{

N

∏
i=1

∫ ∞

0
dαi

}

δ
(

1−ΣN
i=1αi

)

{

N

∏
j=1

α
a j

j

}

U
a
W

b, (4.4)

where c, a and b depend on I, D and the {ai} only. The polynomials U and W are homogeneous

in the {αi} and encode the complete information on the topology (for further details see, e.g.,

ref. [27]). This representation is unique up to renaming of the α-parameters, but this ambiguity

1In this case two massive tadpole diagrams containing the top quarks (one with one loop and one with two loops)

and a two-loop box diagram with Higgs mass remain after asymptotic expansion.
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86, 7< 86, 7<

87< 86<

84<

Figure 6: The left hand side shows the set of diagram topologies, the right hand side the set of reduction

topologies. Their order is chosen by TopoID in a fixed way, numbers in braces denote the presence of

irreducible numerators. The last topology in both sets is an example of a factorizing topology. Note the

modification of self-energy insertions from the left to the right side, propagators carrying the same momen-

tum are identified. Furthermore, there is a non-trivial mapping from the second and fourth diagram topology

to the fourth reduction topology which cannot be deduced from the graphs alone.

can be eliminated by applying the procedure described in [28] to derive a canonical form of the

α-representation, making it a suitable identifier.

TopoID is a generic, process independent tool and bridges the gap between Feynman dia-

grams and unrenormalized results expressed in terms of actual master integrals, i.e. including the

non-trivial relations, in a completely automatic way. It is written as a package for Mathematica

which offers a high-level programming environment and the demanded algebraic capabilities.

However, for the actual calculation FORM code is generated to process the diagrams in an effective

way. Let us briefly summarize features the package has to offer:

• topology identification and construction of a minimal set of topologies,

• classification of distinct and scaleless subtopologies,

• access to properties such as completeness, linear dependence, etc.,

• construction of partial fractioning relations,

• revealing symmetries (completely within all levels of subtopologies),

• graph manipulation, treatment of unitarity cuts, factorizing topologies,

• FORM code generation (diagram mapping, topology processing, Laporta reduction),

• master integral identification (arbitrary base changes, non-trivial relations).

As one cross-check we repeated the NLO calculation within this automatized setup and found

agreement with our previous calculation.
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