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In 2012, the discovery of a particle compatible with a Higgs boson of a mass of roughly 125 GeV
was announced. This great success is now being followed by the identification of the nature of
this particle and the particle’s properties are being measured. One of these properties is the Higgs
boson mass which is already known very precisely with an experimental uncertainty of below
1 GeV. In some extensions of the Standard Model, like in supersymmetric extensions, the Higgs
boson mass can be predicted and hence, the measured mass constrains the parameters of the
model. For a full exploitation of this constraint, a precise theoretical prediction is needed. The
presented combination of the results obtained by the Feynman diagrammatic approach and the
renormalization group equation approach improves the known Higgs mass prediction for larger
mass scales of the superpartner particles.
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1. Introduction

The biggest success of the first run of the LHC is the discovery of a particle in the Higgs
search channels [1, 2]. The properties of this particle are being measured and conform so far with
the Higgs boson of the Standard Model (SM). In the SM, only one Higgs boson exists and its mass
is a free parameter. In extensions of the SM, however, several Higgs bosons might exit with one
of them being the discovered one and their masses can depend on other parameters of the theory.
Supersymmetric models like the Minimal Supersymmetric Model (MSSM) or the Next-to MSSM
fall into this category. In the MSSM, the mass of the lightest Higgs boson can be predicted from
other parameters in the theory. In this case, the mass measurement of the newly discovered boson
can be exploited to constrain the parameters of the underlying theory.

2. The Higgs Sector in the MSSM

The Higgs potential VHiggs in the MSSM is given by

VHiggs =
g2 +g′2

8
(H+

d Hd−H+
u Hu)

2 +
g2

2
|H+

d Hu|2

+ |µ|2(H+
d Hd +H+

u Hu)

+(m2
1H+

d Hd +m2
2H+

u Hu)+(εi j|m2
12|e

iϕm2
12 H i

dH j
u +h.c.) . (2.1)

While in the SM the parameters of the Higgs potential do not appear in the other sectors of the
model the MSSM Higgs potential contains terms depending on the gauge couplings g and g′ (as
can be seen in the first line of Eq. (2.1)) due to the underlying supersymmetry. Furthermore, a
term proportional to the absolute value squared of the coupling µ governing the mixing of the
Higgs superfields exists. Finally, the soft breaking part of the Higgs potential depends on the soft
breaking parameters m2

1, m2
2 and m2

12. The latter of these parameters can be complex in general,
however, applying a Peccei-Quinn transformation this phase can be rotated away without changing
the physical content of the model [3]. A second phase can appear as a phase difference of the two
vacuum expectation values. Exploiting the minimum condition for the potential leads, however, to
a vanishing phase. Hence, there are no physical phases at the tree-level in the Higgs sector of the
MSSM and hence no CP-violation.

In the MSSM, five physical Higgs bosons with three neutral and two charged ones exist where
two of the neutral ones are CP-even and one is CP-odd in the absence of CP-violation. The masses
of these Higgs bosons are not all independent. To be more precise, there are two independent
parameters in the Higgs sector which are often chosen as the mass of the CP-odd Higgs boson
or the charged Higgs boson mass in a CP-conserving or a CP-violating scenario, respectively,
and the ratio of the Higgs vacuum expectation values tanβ = vu/vd . Hence, three of the four
masses can be predicted. The mass of the lightest Higgs boson has an additional theoretical upper
limit which, at Born level, is at the Z boson mass Mh ≤ MZ but is shifted to higher values via
quantum corrections so that Mh . 135 GeV for masses of the supersymmetric top quark partners
of up to a couple of TeV [4]. The mass of the discovered particle with Mh ≈ 125.5 GeV lies
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within this range and the lightest Higgs boson could describe the discovered particle (see e.g. [5]).
Due to the dependence of the quantum corrections on the MSSM parameters the Higgs boson
mass is an interesting precision observable—however, to completely exploit this information the
uncertainty of the theoretical prediction should at least match the experimental accuracy. While the
experimental measurement of the Higgs mass Mh is already very precise with

ATLAS: Mh = 125.5±0.2(stat)++0.5
−0.6(sys) GeV [6]

CMS: Mh = 125.7±0.3(stat)±0.3(sys) GeV [7]

and hence an experimental error of ∆Mexp.
h < 1 GeV the estimated theory uncertainty is approxi-

mately ∆Mtheory
h ≈ 3 GeV [4]. An improvement on the theory uncertainty is therefore mandatory.

Special questions that have been discussed in the context of Higgs mass constraints are how
light the top quark partners, the top squarks, can be, and how large the mixing between the partners
of the left-handed and the right-handed top quark must be in order to yield a Higgs mass value
matching the measured one.

Not only for constraining the parameter space, a precise prediction of the Higgs boson mass
is needed but also as an input for the consistent calculation of Higgs production cross sections and
partial decay widths within the MSSM.

3. Calculation of the Higgs masses in the MSSM

Two main methods have been applied for the calculation of the Higgs boson masses in the
MSSM: the Feynman diagrammatic (FD) approach1 [8–13] and the renormalization group equation
(RGE) approach [14–20].

3.1 The Feynman-diagrammatic approach

In the FD approach, Feynman diagrams that contribute to the renormalized Higgs self energies
Σ̂ are calculated and the renormalized two-point vertex function Γ̂

−iΓ̂(p2) = p2−M(p2) (3.1)

has to be determined where M(p2) is the loop-corrected Higgs-mass matrix

M(p2) =

M2
hBorn
− Σ̂hh(p2) −Σ̂Hh(p2) −Σ̂hA(p2)

−Σ̂Hh(p2) M2
HBorn
− Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂hA(p2) −Σ̂HA(p2) M2
ABorn
− Σ̂AA(p2)

 (3.2)

with the Born masses squared M2
hBorn

, M2
HBorn

and M2
ABorn

for the light CP-even, the heavy CP-even
and the CP-odd Higgs boson, respectively, and the renormalized Higgs self energies Σ̂φ χ with
φ ,χ = h,H,A.

In the case of real parameters and hence CP-conservation, the mixing between CP-odd and
CP-even Higgs bosons vanishes, Σ̂hA(p2) = Σ̂HA(p2) = 0.

The calculations of the zeroes of the determinant of the two-point vertex function det(Γ) = 0
yields the values for the loop-corrected Higgs boson masses.

1The effective potential approach and the FD approach in the approximation of vanishing external momenta lead to
the same result.
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3.2 The renormalization group equation approach

In the simplest version of the RGE approach it is assumed that all the supersymmetric partner
particles are heavy with masses of the order of the mass scale MS. At energies larger than the
mass scale MS the full MSSM theory is active while below the SM as an effective theory is a good
description. The effective theory is matched to the MSSM via the requirement that the quartic
Higgs coupling in the MSSM λ MSSM and in the SM λ SM adopt the same value at the scale MS,

λ
MSSM(MS) = λ

SM(MS) (3.3)

Starting from this value of λ SM, the SM RGEs are used to evolve λ SM to lower values. The Higgs
mass squared at the scale of the top quark mass mt is then given as

M2
h(m

2
t ) = 2λ

SM(mt)v2 (3.4)

with the vacuum expectation value v ≈ 174 GeV. In general, in order to obtain the pole mass a
conversion between the MS mass of Eq. (3.4) and the on-shell mass is necessary.

3.3 Comparison of both approaches

Both of the approaches have their advantages:

• The FD approach, on the one hand, takes all logarithmic and non-logarithmic terms into
account at a certain order of perturbation theory. This is especially important for lower mass
scales. Additionally, different mass scales are automatically implemented which, however,
can lead to large logarithmic contributions if the splitting between the mass scales is large.
Furthermore, the calculated self-energies are not only needed for the mass calculation but
also for the evaluation of the mixing of the Higgs bosons at loop-level.

• The RGE approach, on the other hand, has the advantage of resumming potentially large
logarithmic terms to all orders which is important if large mass scales are playing a role.

In order to profit from both of these advantages we perform a combination of both approaches [21].

4. Combination of both approaches

In the following we restrict ourselves to the CP-conserving case and assume that the parame-
ters are real.

The result of the FD part is adopted from the program FeynHiggs2.9.5 [4, 9, 10, 22]. For
the calculation of the RGE part the SM renormalization group equations at the two-loop level with
vanishing electroweak gauge couplings [15] have been applied. The matching is performed at the
scale MS =

√mt̃1mt̃2 , the geometric mean of the two top squark masses mt̃1 , mt̃2 and the quartic
coupling at this scale is given by [16, 18, 23]

λ (MS) =
3y4

t

8π2
X2

t

M2
S

[
1− X2

t

M2
S

]
(4.1)
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where yt is the Yukawa coupling and Xt = At − µ cotβ the top squark mixing parameter with the
soft-breaking trilinear coupling At . It should be noted that also in Eq. (4.1) vanishing electroweak
gauge couplings have been assumed which leads to a vanishing tree-level contribution. Hence,
applying Eq. (3.4) results in a pure higher-order correction to the Higgs mass. Following this
procedure yields a Higgs-mass prediction with the leading and the next-to leading logarithmic
contributions ∝ Ln, ∝ Ln−1 with L = log(MS/mt) at n-loop order resummed to all orders.

In order to combine the FD and the RGE approach great care has to be taken to avoid double
counting of logarithms. Therefore, the logarithmic part has to be subtracted from the FD result.
The FD calculation is performed with a top quark mass in the MS scheme and top squark masses
and mixings in an on-shell scheme while the RGE method leads to a result in the MS scheme
throughout. To avoid double counting, the logarithmic part which is subtracted has to be in the
on-shell scheme. Otherwise logarithms stemming from the translation between the schemes will
reintroduce a double counting. In the case of the mass parameter MS no logarithms appear in
the conversion from the MS to the on-shell scheme while the conversion of the mixing parameter
involves a logarithm and is given by

XMS
t = XOS

t

[
1+ ln

M2
S

m2
t

(
αs

π
− 3αt

16π

)]
. (4.2)

The Higgs-mass correction is then obtained as

∆M2
h = (∆M2

h)
FD(XOS

t )− (∆M2
h)

1l,2l-log(XOS
t )+(∆M2

h)
RGE(XMS

t ) (4.3)

where (∆M2
h)

FD, (∆M2
h)

1l,2l-log and (∆M2
h)

RGE are the contribution of the FD approach, the loga-
rithmic part of the one- and the two-loop order O(αtαS) and O(α2

t ) with parameter Xt on-shell
and the part obtained from the RGE approach according to Eq. (3.4), respectively. In the case of
large CP-odd Higgs-boson masses with MA�MZ , the self energy of the CP-even Higgs-interaction
eigenstate φu which couples to up-type quarks is approximately

Σ̂φuφu ≈ (sinβ )−2
∆M2

h . (4.4)

Using this approximation the corrections can be incorporated into the loop-corrected Higgs-mass
matrix Eq.(3.2) and hence be taken into account in the loop-corrected Higgs mixing, see e.g. [9].

5. Results

In order to discuss the importance of the resummed corrections in Fig. 1 on the left side
the FeynHiggs2.9.5 result (FH295) is shown (pink) in comparison to the results including
logarithmic higher-order contributions which are implemented in FeynHiggs2.10.0 [4, 9, 10,
21, 22]. The leading and the next-to leading logarithmic terms up to 3- to 7-loop order O(αn

t αm
s ),

n+m = 3, . . . ,7 have been calculated analytically and combined to the FeynHiggs result (shown
in green, blue, yellow, brown and black). Numerically, the leading and next-to leading logarithmic
contributions have been resummed to all orders and the combined result, which corresponds to the
one of the new implementation of FeynHiggs2.10.0, is shown in red.

The parameters have been chosen as follows: MA = M2 = µ = 1 TeV with M2 being the SU(2)
gaugino soft breaking parameter, the gluino mass mg̃ = 1.6 TeV and tanβ = 10. For the solid
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(dashed) lines no mixing Xt = 0 (maximal mixing Xt/MS = 2) is assumed. The old FeynHiggs
result is reliable up to SUSY breaking mass scales of the order of O(1 TeV) while for higher
values of MS it underestimates the Higgs mass value. Taking into account logarithms of 3-loop
order yields a valid result up to O(5 TeV) in the no mixing case. For higher values of MS the
3-loop result overestimates the resummed result. Thus, further logarithmic contributions have to
be taken into account and can amount to mass shifts of several GeV.

On the right side of Fig. 1 a comparison of the FeynHiggs result with the known 3-loop
order prediction of the Higgs mass is performed. The latter is obtained with the help of the pro-
gram H3m [13]. In order to perform the comparison a CMSSM scenario has been chosen with the
soft-breaking parameters M0 = M1/2 = 200 . . .15000 GeV and A0 = 0 and additionally tanβ = 10
and µ > 0. The low-energy parameters have then been calculated with the spectrum generator
SoftSUSY [24]. The following results are shown: the resummed leading and next-to leading log
result (red), the result including only leading and next-to leading logarithmic terms up to 3-loop
order (green, solid), the result including only up to leading and next-to leading logarithmic terms
of order O(αtα

2
s ) (green, dashed) and the result obtained with H3m (blue). The program H3m takes

into account corrections up to order O(αtα
2
s ). As it is calculated using the FD approach it includes

all terms of this order, also non-logarithmic terms. Also, it takes into account different SUSY
mass scales. Additionally, the applied renormalization schemes at two-loop order differ in H3m

and FeynHiggs. With respect to these difference the O(αtα
2
s ) results of both programs agree
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Figure 1: The mass of the lightest MSSM Higgs boson Mh in dependence on the mass scale MS.
Left: The “old” FeynHiggs result with no additional logarithmic contributions of 3- or higher loop or-
der (pink), including analytically determined leading and next-to leading logarithmic contributions of 3- to
7-loop order (green, blue, yellow, brown, black) and including the numerically obtained resummed leading
and next-to leading contributions (red) are shown for no mixing/maximal mixing (solid/dashed).
Right: The H3m result is shown in blue, the FeynHiggs result including leading and next-to leading log-
arithmic contributions of 3-loop order of O(αtα

2
s ) and additionally of O(α2

t αs) and O(α3
t ) is presented in

green dashed and solid, respectively. The FeynHiggs result including the resummed logarithmic contri-
butions is shown in red.
Parameters are chosen as described in the text.
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reasonably well. However, one can also see that the terms of O(α2
t αs) and O(α3

t ) are important
too and lead to a reduction of the size of the Higgs mass prediction.

6. Conclusion

The Higgs sector of the Minimal Supersymmetric Standard Model has been discussed. One
important and easily measurable observable is the mass of the newly discovered particle which
could be the lightest Higgs boson of the MSSM. To fully exploit this constraint, a precise predic-
tion of the mass of the lightest Higgs boson is necessary. For lower SUSY mass scales the Feynman
diagrammatic approach leads to a precise prediction taking into account all terms of a certain or-
der, also non-logarithmic terms. For larger SUSY mass scales the renormalization group equation
approach is advantageous as potentially large logarithms are resummed. The presented combina-
tion of both approaches improves the known Feynman diagrammatic results for larger SUSY mass
scales. It is implemented into the program FeynHiggs and can be switched on by the user by
setting the flag looplevel =3.

Further refinements, e.g. allowing for different mass scales or including higher-order contri-
butions in the matching conditions, are planned.
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