PROCEEDINGS

OF SCIENCE

New Developments in FormCalc 8.4

Christoph GroB

Institut fiir Theoretische Physik und Astrophysik, Universitdt Wiirzburg, D-97074 Wiirzburg,
Germany
E-mail: chrisgr90@ gmx.net

T. Hahn*
MPI fiir Physik, Fohringer Ring 6, D—80805 Munich, Germany
E-mail: hahn@mpp.mpg.de

Sven Heinemeyer
Instituto de Fisica de Cantabria (CSIC-UC), E-39005 Santander, Spain
E-mail: Sven.Heinemeyer@cern.ch

Federico von der Pahlen
Instituto de Fisica, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
E-mail: fp@gfifudea.edu.co

Heidi Rzehak
Albert-Ludwigs-Universitdt Freiburg, Physikalisches Institut, D-79104 Freiburg, Germany

E-mail: Heidi.Rzehak@cern.ch

Christian Schappacher

Institut fiir Theoretische Physik, Karlsruhe Institute of Technology, D—76128 Karlsruhe,
Germany (former address)

E-mail: schappacher@kabelbw.de

We present new developments in FeynArts 3.9 and FormCalc 8.4, in particular the MSSMCT
model file including the complete one-loop renormalization, vectorization/parallelization issues,
and the interface to the Ninja library for tensor reduction.

Loops and Legs in Quantum Field Theory - LL 2014,
27 April - 2 May 2014
Weimar, Germany

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

FormCalc 8.4 T. Hahn

1. Introduction

FeynArts [1] and FormCalc [2] are Mathematica packages for the generation and simplification
of Feynman diagrams. In a first step, FormCalc reads diagrams up to one-loop order generated
by FeynArts and returns a simplified symbolic result which can be inspected or modified using
regular Mathematica commands as well as several FormCalc functions and options for analytic
manipulations, such as the application of Fierz identities. For efficient numerical evaluation, e.g. of
the cross-section, the analytical expressions can then be written out as highly optimized subroutines
in Fortran or C, complemented by a library of utility functions. The generated code is largely self-
contained. It uses simple Fortran programs to set the inputs rather than (static) parameter cards,
which would be limited to a certain class of models. The numeric calculation can also be interfaced
back to Mathematica through MathLink, such that e.g. the cross-section becomes available as a
Mathematica function of its input parameters.

This note presents new features and improvements in FeynArts 3.9 and FormCalc 8.4:

e The MSSMCT model file including the complete one-loop renormalization of the complex
MSSM.

e Run-time selection of renormalization schemes.
e Vectorization/parallelization issues in FormCalc, LoopTools, and Cuba.

e Ninja interface for FormCalc.

2. The MSSMCT Model File

The full renormalization prescriptions of the MSSMCT model file [3] cannot be reproduced
in this limited space. Rather, we focus on a few conceptually important issues which also required
changes in FeynArts and FormCalc.

2.1 The Higgs-boson Sector

Higher-order corrections are phenomenologically very important in the Higgs sector. Indis-
criminately including them on propagators and vertices risks upsetting the relations necessary for
the proper cancellation of UV and IR divergences, however, since this mixes orders in perturbation
theory. The masses on the Higgs propagtors should ideally be consistent with the Higgs mixing
angle o parameterizing the vertices, but this conflicts with the fact that mixing can occur between
all three states /1, H, A at loop level, which is not expressible through a single angle «.

We opted therefore to formulate the vertices with the tree-level o and insert tree-level masses
on loop propagators but use loop-corrected masses on all other propagators. At the level of the
Feynman rules it is not possible to generally avoid incomplete cancellations due to a mismatch
between tree-level and loop-corrected masses, though there are typically process-specific solutions.
Our recommendation is to test UV and IR finiteness with loop-corrected masses and revert to tree-
level masses as far as necessary.

On the technical side, FeynArts needed to be extended to allow a detailed choice of the masses
inserted on different types of propagators. For example, the declaration of the light CP-even Higgs
boson £ includes the two mass specifiers,

FormCalc 8.4 T. Hahn

S[1] == {
Mass -> MhO,
Mass[Loop] —> MhOtree, ... }

2.2 The Fermion/Sfermion Sector

The model file is presently limited to minimal flavor violation in the sfermion sector, which
means that for non-trivial CKM matrix there is a slight imbalance between fermions and sfermions;
for example, the b-quark has an admixture from d and s while the b does not. Because this violates
delicate supersymmetric relations, reactions involving squarks (in particular external ones) may not
become finite and we have therefore chosen to turn CKM mixing off by default. It can be enabled
by setting $CKM = True.

2.3 Run-time Renormalization Scheme Selection

In the sfermion and chargino/neutralino sectors the available degrees of freedom do not allow
all physical quantities to be chosen on-shell simultaneously. Solving for the dependent parameters
typically yields results which become numerically unstable in certain regions of parameter space,
e.g. because of some combination of mixing-matrix elements in the denominator. For example, in
the CCN schemes (two charginos and one neutralino on-shell) the renormalization constants S M,
and S diverge in regions where || ~ |M;| (gaugino—-Higgsino mixing close to maximal).

For this reason one would like to switch between different schemes at run-time, say while
scanning over parameter space. Since the dependent parameters vary from scheme to scheme,
straightforward if-statements such as dMUE1 = IndexIf [cond, Su*, Su®] may contain overlap-
ping dependencies, however, and cannot naively be ordered for evaluation in Fortran. For example,

dMUE1l = IndexIf[cond, Su*(6M{), Su®1;
dMinoll = IndexIf[cond, SM{, SMB(5u®)1;

cannot be ordered as it stands, for u is a function of M in scheme A, but oppositely in B.
The solution was to have FormCalc join the ‘if” and ‘else’ parts of all if-statements with identical
conditions, upon which the statements in each branch can be ordered correctly:

IndexIf[cond,
dMinoll = &M$;

dMUE1 = Sut(sM9),
(» else)

dMUE1 = &ub;

dMinoll = SMB(5u®) 1

On the user side, scheme switching is available in MSSMCT as e.g.
SInoScheme = IndexIf[cond, CNN[2,1,3], CCN[1l]]

where cond might be Abs [Abs [MUE] -Abs [Mino2]] < 50.

Note that a renormalization-scheme switch in principle requires a corresponding transition
of the affected parameters from one scheme to the other (not yet included by default) for a fully
consistent interpretation of the results.

FormCalc 8.4 T. Hahn

In the light of recent activities to automate the generation of Feynman rules also for one-
loop counter terms [4], it should clearly be stated that the MSSMCT model file goes far beyond
simple DR renormalization for the BSM part. As outlined above, SUSY relations and restrictions
due to the available degrees of freedom are taken into account, and renormalization conditions
can be chosen to obtain physically meaningful renormalized parameters over the entire parameter
space. We believe this much wider program requires physical understanding and cannot easily be
automated.

3. Vectorization/Parallelization Issues

3.1 Vectorization of the Helicity Loop

The assembly of the squared matrix element in FormCalc can be sketched as in the following
figure, where the helicity loop sits at the center of the calculation:

Loop(s) over /s and model parameters

Loop(s) over angular variables

Loops over helicities Ay, ..., A,

O+=Y CotlO Ay, 2)* M) (D1, 2n)

The helicity loop is not only strategically the most desirable but also the most obvious candidate
for concurrent execution, as FormCalc does not insert explicit helicity states during the algebraic
simplification [5]. Such a design is known as Single Instruction Multiple Data (SIMD) in computer
science and is conceptually easy to vectorize. With an AVX-capable i7, a speedup of 3.7 out of a
theoretical 4 for the helicity loop could be achieved.

Vectorization is available in both Fortran (using Fortran 90’s vector syntax) and C99 (through
macros emitting explicit SSE3/AVX instructions) and is enabled by default according to the capa-
bilities of the machine on which configure is run. To configure the code for an arbitrary machine
(i.e. without vectorization), the -——generic flag must be used with configure. More in detail, the
automatically determined maximum hardware vector length is written to simd.h and the user can
control in distrib.h whether to include simd.h (default) or define a different vector length in the
SIMD preprocessor variable (zero for no vectorization).

Since the OPP libraries are currently not capable of handling vector-valued numerator func-
tions, SIMD must be set to zero in distrib.h when using the CutTools [6], Samurai [7], or Ninja
[8] libraries.

3.2 Dropping Negligible Helicity Combinations

The helicity sum can further be improved by observing that typically many terms contribute to
the final result only negligibly. While helicity combinations that give an exact zero result could in
principle be identified analytically, this is not really straightforward due to the way the amplitudes
are composed of abbreviations, and it is far less straightforward for small but non-zero (e.g. mass-
suppressed) combinations.

FormCalc 8.4 T. Hahn

The FormCalc-generated code adopts a numerical strategy instead: It observes the terms in the
helicity sum for a (smallish) number of phase-space points, then identifies and suppresses compu-
tation of the negligible ones for all further phase-space points.

Two environment variables control the procedure: FCHSELN specifies the number n of phase-
space points to be observed before taking the decision and FCHSELEPS specifies how much smaller
the contribution of an individual helicity contribution must be relative to the maximum to be ne-
glected, i.e. a helicity combination {A} is dropped if

Xy < SI?)%I})(X{;L} where X3y = Z |.//{(ll)}|
i=1

3.3 Concurrency Issues in LoopTools

LoopTools [2] uses a cache to speed up calculation. Originally this was done for tensor coeffi-
cients only, for which there is both a significant overlap of intermediate results in the computation
and a high chance that once one coefficient is called, related ones will be needed as well. Recently
the cache system was extended to scalar integrals, too, so that CO(...) (formerly not cached) and
C01i(ccO,...) (formerly cached) are now identical. Depending on the application, the cache can
easily make an order-of-magnitude difference in run time.

On the other hand, LoopTools was not thread-safe because of the cache. (Indeed, the actual
computation of the scalar integrals in Fortran with its use of common blocks etc. was not really
thread-safe either.) In a concurrent environment this is most dangerous, as it may silently lead to
wrong results.

Thread-safety has been achieved by serializing cache writes through mutexes. It was also for
this reason, to make them thread-safe, that the scalar functions were moved into the cache sys-
tem. The uncached versions (not thread-safe) are still available as Aputnocache, Bputnocache,
COnocache, DOnocache, EOnocache.

With serialization, cache management has become a strategically even more important task.
Although LoopTools performs efficient binary-tree cache lookups, indiscriminate build-up of the
cache does not only cost memory but performance as well. Care should be taken therefore to flush
the cache whenever a lookup will not reasonably be successful anymore, e.g. when moving to a dif-
ferent point in phase or parameter space, using the clearcache, markcache, and restorecache
calls.

3.4 Vectorization and GPU Issues in Cuba

Cuba [9] is a library for multidimensional numerical integration. From version 3 on it auto-
matically parallelizes sampling of the integrand using fork/wait. The Cuba calls were extended
in version 3.3 to include a new argument, nvec, through which one can have the integrator deliver
more than one point per call to the integrand and e.g. vectorize the computation this way.

Another interesting option is to do massively parallel sampling on a GPU. Re-writing the
integrand function for execution on the GPU is necessarily a task of the user (i.e. cannot be auto-
matically done by Cuba). GPUs have a somewhat different thread model than the CPU, however,
and so the strategy of determining the slices to be sampled by each core in Cuba 3.x was barely suf-
ficient (at least not very convenient) for use with a GPU. Cuba 4.0 redresses this by distinguishing

FormCalc 8.4 T. Hahn

‘accelerators’ (GPU cores) and ‘cores’ (CPU cores, same as in 3.x) and distributes samples differ-
ently for either kind; most importantly it divides a core’s share of points into batches no larger than
the GPU can handle.

Smaller batches are useful even for CPU cores, for they effectively load-level the sampling. To
sample 50000 points on four cores, for example, Cuba 3.x would distribute 12500 points to each
core. This is optimal only if the evaluation of the integrand is equally fast at all points, however,
otherwise it is smarter to distribute smaller batches of a user-defined size, say 2000, which reduces
the chance of a bottleneck at a very reasonable increase in communication overhead.

4. Ninja Interface

Ninja [8] is a library for tensor reduction based on unitarity methods. Unlike the ‘traditional’
OPP libraries CutTools [6] and Samurai [7], Ninja does not rely on sampling the numerator alone
but performs a Laurent expansion of the integral and is thereby able to reconstruct the numerator
tensor using far fewer samples and in a numerically more stable way. To pull off this feat, Ninja
requires several expansions of the numerator function N(g*,u?) (with loop momentum g* and
renormalization scale f) in the variables ¢, x, and u? as follows:

e the numerator itself: N(g*, u?),
e the u expansion, for computation of the box coefficients: N(n/ ,r%?),

e the T3 expansion, for computation of the triangle and tadpole coefficients:

2
N(vg —l—tvgt + ﬁtu vf{,,u2),
o the T2 expansion, for computation of the bubble coefficients:
N+ +0d + —ﬁ°+ﬁ1xtﬁzx2+”2 v p?).

FormCalc generates each of these numerator expansions as an independent subroutine which com-
putes the coefficients of #/x*u? in the ranges of {j k,I} needed by Ninja as a function of the
remaining parameters v;, f3;.

5. Summary

FeynArts 3.9 (http : //feynarts.de) and FormCalc 8.4 (http : //feynarts.de/formcalc)
have many new and improved features, most notably the MSSMCT model file including the full
one-loop renormalization of the MSSM, support for vectorization/parallelization, and the interface
to the Ninja library.

References

[1] Hahn T, 2001, Comput. Phys. Commun. 140 418 [hep-ph/0012260].

[2] Hahn T, Pérez-Victoria M, 1999, Comput. Phys. Commun. 118 153 [hep-ph/9807565].

FormCalc 8.4 T. Hahn

[3] Fritzsche T, Hahn T, Heinemeyer S, von der Pahlen F, Rzehak H, Schappacher C, 2014, Comput. Phys.
Commun. 185 1529 [arXiv:1309.1692]. Heinemeyer S, et al., these proceedings.

[4] Degrande C, 2014, arXiv:1406.3030.

[5]1 Hahn T, 2003, Nucl. Phys. Proc. Suppl. 116 363 [hep-ph/0210220].

[6] Ossola G, Papadopoulos C, Pittau R, 2008, JHEP 0803 042 [arXiv:0711.3596].

[7] Mastrolia P, Ossola G, Reiter T, Tramontano F, 2010, JHEP 1008 080 [arXiv:1006.0710].
[8] Peraro T, 2014, arXiv:1403.1229.

[9] Hahn T, 2005, Comput. Phys. Commun. 168 78 [hep-ph/0404043].

