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Drell–Yan-like W-boson and Z-boson production in the resonance region allows for some high-

precision measurements that are crucial to carry experimental tests of the Standard Model to the

extremes, such as the determinations of the W-boson mass and the effective weak mixing an-

gle. We describe how the Standard Model prediction can be successfully performed in terms of

a consistent expansion about the resonance pole, which classifies the corrections in terms of fac-

torizable and non-factorizable contributions. The former can be attributed to the W/Z production

and decay subprocesses individually, while the latter link production and decay by soft-photon

exchange. At next-to-leading order we compare the full electroweak corrections with the pole-

expanded approximations, confirming the validity of the approximation. At O(αsα), we describe

the concept of the expansion and report on results on the non-factorizable contributions, which

turn out to be phenomenologically negligible. Moreover, we present first (preliminary) results on

the dominant factorizable O(αsα) corrections, which originate from the interplay of initial-state

QCD and final-state electroweak corrections. The naive factorization of NLO QCD and NLO EW

corrections approximates the O(αsα) corrections to the W-boson transverse-mass distribution,

but, e.g., not the distribution in the lepton transverse momentum.
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1. Introduction

Drell–Yan-like W- or Z-boson production is among the most important standard candle pro-

cesses at the LHC. Apart from delivering important information on parton distributions and al-

lowing for the search for new gauge bosons in the high-mass range, these processes allow for

high-precision measurements in the resonance regions. The weak mixing angle might be measured

with LEP precision, and the W-boson mass MW with an accuracy exceeding 10MeV.

In the past two decades, great effort was made in the theory community to deliver precise

predictions matching the required accuracy (for a list of references, see Ref. [1]). QCD corrections

are known up to next-to-next-to-leading order, electroweak (EW) corrections up to next-to-leading

order (NLO). Both on the QCD and on the EW side, there are further refinements such as leading

higher-order effects, resummations, matched parton showers. In view of fixed-order calculations,

the largest missing piece seems to be the mixed QCD–EW corrections of O(αsα). Knowing the

contribution of this order will also answer the question how to properly combine QCD and EW

corrections in predictions. In Ref. [2] this issue is quantitatively discussed with special emphasis

on observables that are relevant for the MW determination, revealing percent corrections of O(αsα)

that should be calculated. First steps towards this direction have been taken by calculating two-loop

contributions [3], the full O(αsα) correction to the W/Z-decay widths [4], and the full O(α) EW

corrections to W/Z+jet production including the W/Z decays [5].

In this short article, we briefly report on our effort [1] to calculate the O(αsα) corrections to

Drell–Yan processes in the resonance region via the so-called pole approximation, which is based

on a systematic expansion about the resonance pole. Specifically, we sketch the salient features

of the approach, discuss its success at NLO, and describe results on the so-called non-factorizable

contributions at O(αsα), which comprise the most delicate contribution to the PA. Moreover, we

present first (preliminary) results on the dominant factorizable corrections, originating from the

interplay of initial-state QCD and final-state electroweak corrections.

2. Pole approximation for NLO corrections

The general idea [6] of a pole approximation (PA) for any Feynman diagram with a sin-

gle resonance is the systematic isolation of all parts that are enhanced by a resonance factor

1/(p2
−M2

V + iMV ΓV ), where p, MV , and ΓV are the momentum, mass, and width of the resonating

particle V , respectively. In Drell–Yan production, V stands for a W or a Z boson. For W production

different variants of PAs have been suggested and discussed at NLO already in Refs. [7, 8]. For the

virtual corrections we follow the PA approach of Ref. [8]. Note, however, that we apply the PA to

the real corrections as well, in contrast to Ref. [8] where they were based on full matrix elements.

Schematically each transition amplitude has the form

M =
W (p2)

p2 −M2
V +Σ(p2)

+N(p2), (2.1)

with functions W and N describing resonant and non-resonant parts, respectively, and Σ denoting

the self-energy of V . The resonance of M is isolated in a gauge-invariant way as follows,

M =
W (µ2

V )

p2 −µ2
V

1

1+Σ′(µ2
V )

+

[

W (p2)

p2 −M2
V +Σ(p2)

−
W (µ2

V )

p2 −µ2
V

1

1+Σ′(µ2
V )

]

+N(p2), (2.2)
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Figure 1: Generic diagrams for the lowest-order amplitude (a), for the EW virtual NLO factorizable correc-

tions to production (b) and decay (c), as well as for virtual non-factorizable corrections (d), where the empty

blobs stand for all relevant tree structures and the ones with “α” inside for one-loop corrections of O(α).

where µ2
V = M2

V − iMV ΓV is the gauge-invariant location of the propagator pole in the complex p2

plane. Equation (2.2) can serve as a basis for the gauge-invariant introduction of the finite decay

width in the resonance propagator, thereby defining the so-called pole scheme. In this scheme the

term in square brackets is perturbatively expanded in the coupling α including terms up to O(α),

while the full p2 dependence is kept. An application of this scheme to Z-boson production is, e.g.,

described in Ref. [9] in detail.

The PA for the amplitude results from the r.h.s. of (2.2) upon neglecting the last, non-resonant

term and asymptotically expanding the term in square brackets in p2 about the point p2 = µ2
V , where

only the leading, resonant term of the expansion is kept. The first term on the r.h.s. of (2.2) defines

the so-called factorizable corrections in which on-shell production and decay amplitudes for V are

linked by the off-shell propagator; these contributions are illustrated by diagrams (b) and (c) of

Fig. 1. The term on the r.h.s. of (2.2) in square brackets contains the so-called non-factorizable

corrections which receives resonant contributions from all diagrams where the limit p2
→ µ2

V in

W (p2) or Σ′(p2) would lead to (infrared) singularities. At NLO, this happens if a soft photon of

energy Eγ
<
∼ ΓV is exchanged between the production process, the decay part, and the intermediate

V bosons; a generic loop diagram is shown in Fig. 1(d). Although in principle the real-emission

corrections can be based on full amplitudes without further approximations, the consistent appli-

cation of the PA to both virtual and real corrections is necessary to make a separate discussion of

factorizable and non-factorizable contributions possible.

Conceptually the evaluation of the non-factorizable corrections is the most delicate among all

PA contributions. They possess rather interesting features. When the invariant mass of the reso-

nance is integrated over, their contribution vanishes [10], i.e. they only tend to distort the resonance

without changing the normalization of the cross section. Since they only involve soft photons,

they take the form of a global correction factor to the lowest-order matrix element squared, with

a non-trivial dependence on the virtuality (p2
− µ2

V ) which gave the corrections their name. The

virtual correction factor can be explicitly calculated with quite compact results, even for double

resonances for which their calculation is described in detail in the literature [11]. The real correc-

tions are better evaluated numerically to keep some flexibility in the treatment of photons in the

event selection, using extended eikonal currents [11] that take into account the resonance distortion

by soft photons of energy Eγ
<
∼ ΓV . Collinear singularities do not occur at all, since all relevant

diagrams are of interference type.

In spite of the simple general idea of the PA, its consistent implementation in higher-order

calculations involves subtle details. For instance, care has to be taken that subamplitudes appearing

before or after the V resonance are based on subamplitudes with on-shell V bosons, otherwise

3



P
o
S
(
L
L
2
0
1
4
)
0
4
5

O(αsα) corrections to Drell–Yan processes in the resonance region Stefan Dittmaier

NLO QCDxEW
NLO QCD
LO

√
s = 14 TeV

pp → W+ → νµµ+

MT,νl[GeV]

dσ
dMT,νl

[

pb
GeV

]

12011010090807060

1000

100

10

1

0.1

NLO QCDxEW
NLO QCD
LO

√
s = 14 TeV

pp → W+ → νµµ+

pT,l[GeV]

dσ
dpT,l

[

pb
GeV

]

60555045403530

1000

100

10

1

EW, PA
EW, non−fact
EW, fact, fin
EW, fact, ini
EW

√
s = 14 TeV

pp → W+ → νµµ+

MT,νl[GeV]

δ[%]

12011010090807060

2

0

−2

−4

−6

−8

−10
EW, PA
EW, non−fact
EW, fact, fin
EW, fact, ini
EW

√
s = 14 TeV

pp → W+ → νµµ+

pT,l[GeV]

δ[%]

60555045403530

5

0

−5

−10

−15

Figure 2: Distributions in the transverse mass (left) and transverse lepton momentum (right) for W+ pro-

duction at the LHC, with the upper plots showing the absolute distributions and the lower plots the relative

NLO EW corrections in PA broken up into its factorizable and non-factorizable parts (taken from Ref. [1]).

gauge invariance cannot be guaranteed. Setting p2 = M2
V , instead of the problematic complex

value p2 = µ2
V , in the O(α) corrections is certainly allowed in O(α) approximation. However, the

procedure is not unique, because the phase space is parametrized by more than one variable. The

on-shell projection p2
→ M2

V has to be defined carefully. Different variants may lead to results that

differ within the intrinsic uncertainty of the PA, which is of O(α/π ×ΓV/MV ) in the resonance

region when applied to O(α) corrections. However, care has to be taken that virtual and real

corrections still match properly in the (soft and collinear) infrared limits in order to guarantee the

cancellation of the corresponding singularities.

Based on our results derived in Ref. [1], Figure 2 exemplarily shows the NLO QCD and

EW corrections to the transverse-mass and transverse-lepton-momentum distributions for W+ pro-

duction at the LHC and, in particular, illustrates the structure and quality of the PA applied to

the EW corrections. The distributions show the well-known Jacobian peaks at MT,νl ∼ MW and

pT,l ∼ MW/2, respectively, which play a central role in the measurement of the W-boson mass MW

at hadron colliders. The EW corrections significantly distort the distributions and shift the peak

4
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position. Note also the extremely large QCD corrections above the peak in the pT,l distribution,

which are induced by the recoil of the W boson against the hard jet of the real QCD correction. The

lower panels of Fig. 2 compare the full NLO EW corrections (without photon-induced processes

from qγ collisions) to the result of the PA, which is also broken up into factorizable corrections

to the initial/final state and non-factorizable contributions. Near the Jacobian peaks, the PA turns

out to be good within some 0.1%. Interestingly, the impact of the non-factorizable corrections is

suppressed to the 0.1% level and, thus, phenomenologically negligible. A similar conclusion even

holds for the factorizable initial-state corrections when one takes into account that the percentage

correction to the pT,l distribution actually should be normalized to the full cross section including

QCD corrections, which are overwhelming above the Jacobian peak. Thus, the relevant part of the

NLO EW corrections near the peaks entirely results from the factorizable final-state corrections,

where the bulk originates from collinear final-state radiation from the decay leptons.

More details and results on the PA at NLO are discussed in Ref. [1], in particular for Z pro-

duction, for which the PA works similarly well.

3. Pole approximation at O(αsα)

Though technically more complicated, the concept of the PA, described at NLO in the previous

section, can be carried over to higher orders in a straightforward way. The corresponding virtual,

real, and mixed virtual–real contributions involve various different interference diagrams. Exem-

plarily we depict the generic graphs for the non-factorizable O(αsα) corrections in Fig. 3 and for

the factorizable contributions combining initial-state QCD and final-state EW corrections in Fig. 4.

As at NLO, the non-factorizable corrections originate from the virtual exchange or real emis-

sion of soft photons with energies Eγ
<
∼ ΓV , however, without any restriction on the kinematics of

virtual gluons or real jet radiation. In Ref. [1] we have discussed in detail the factorization proper-

ties of the virtual and real photonic parts of the non-factorizable O(αsα) corrections, which result

from the soft nature of the effect. Using gauge-invariance arguments borrowed from the classic

YFS paper [12], we show that this factorization of the photonic factors even hold to any order in

the strong coupling αs. We have verified this statement diagrammatically and, for the purely virtual

corrections, also with effective-field-theory techniques [13]. Both the virtual and real photonic cor-

rections can be written as correction factors to squared matrix elements containing gluon loops or

external gluons, i.e. the necessary building blocks are obtained from tree-level and one-loop calcu-

lations. Our numerical study [1] shows that the non-factorizable corrections of O(αsα) below the

0.1% level and, thus, phenomenologically negligible, both for W-boson and Z-boson production.

Of course, one could have speculated on this suppression, since the impact of non-factorizable

photonic corrections is already at the level of some 0.1% at NLO. However, the O(αsα) corrections

mix EW and QCD effects, so that small photonic corrections might have been enhanced by the

strong jet recoil effect observed in the pT,l distribution. This enhancement is seen in the virtual and

real corrections separately, but not in their sum. Furthermore, the existence of gluon-induced (qg)

channels implies a new feature in the non-factorizable corrections. In the qq̄ channels, and thus in

the full NLO part of the non-factorizable corrections, the soft-photon exchange proceeds between

initial- and final-state particles, whereas in the qg channels at O(αsα) the photon is also exchanged

5
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Figure 3: Generic diagrams for the non-factorizable corrections of O(αsα).
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Figure 4: Generic diagrams for the O(αsα) factorizable corrections of the “initial–final” type.
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Figure 5: Relative factorizable corrections (in red) of O(αsα) induced by initial-state QCD and final-state

EW contributions to the distributions in MT,ν l (left) and pT,l (right) for W+ production at the LHC. The naive

products of the NLO correction factors δαs and δα are shown for comparison (see text).

δ′
αs

× δfin
α

δ′
αs

× δα

δini−fin
αsα

√
s = 14 TeV

pp → W+ → νµµ+

MT,νl[GeV]

δ[%]

12011010090807060

1

0.5

0

−0.5

−1

−1.5

−2

δ′
αs

× δfin
α

δ′
αs

× δα

δini−fin
αsα

√
s = 14 TeV

pp → W+ → νµµ+

pT,l[GeV]

δ[%]

60555045403530

10

5

0

−5

−10

−15

−20

−25

−30

Figure 6: As in Fig. 5, but with the naive product of QCD and EW corrections based on δ ′
αs

instead of δαs .

between final-state particles. The known suppression mechanisms in non-factorizable corrections

work somewhat differently in those cases [11].

Figures 5 and 6 show first preliminary results on the “initial–final” factorizable O(αsα) cor-

rections δ ini−fin
αsα

induced by initial-state QCD and final-state EW contributions. From the results of

the PA for the NLO EW corrections, one has to expect that those contributions furnish the by far

dominant part at O(αsα), while the two other types of factorizable contributions of “initial–initial”

and “final–final” type are much smaller. In detail, the figures compare the factorizable initial–final

corrections (red curves) to different versions of naive products of the NLO QCD and NLO EW

correction factors. To define the naive products, we write the NLO QCD cross section σNLOs as

σNLOs ≡ σLO(1+δαs
) = σ0 +σLO

(

σLO
−σ0

σLO
+δαs

)

≡ σ0 +σLOδ ′

αs
, (3.1)

where σLO and σ0 denote the LO cross section evaluated with LO and NLO PDFs, respectively.

The standard QCD K factor is, thus, given by KNLOs = 1+ δαs
, and δ ′

αs
differs from δαs

by the

7
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LO prediction induced by the transition from LO to NLO PDFs. The EW correction factor is used

in two different versions, first based on the full NLO correction (δα , black curves), and second

based on the dominant EW final-state correction of the PA (δ fin
α , blue curves). The relative EW

correction is always derived from the ratio of the NLO EW contribution ∆σNLOew and the LO

contribution σ0 to the NLO cross section, δα = ∆σNLOew/σ0, so that the EW correction factors

are practically independent of the PDF set. An ansatz for the cross section σ
NNLOs⊗ew

naivefact based on the

naive factorization of QCD and EW corrections then reads

σ
NNLOs⊗ew

naivefact = σNLOs(1+δα) = σLO(1+δαs
)(1+δα). (3.2)

This ansatz should approximate the full NLO QCD+EW cross section improved by our calculated

O(αsα) correction ∆σ
NNLOs⊗ew

ini−fin ,

σNNLOs⊗ew = σNLOs +∆σNLOew +∆σ
NNLOs⊗ew

ini−fin , (3.3)

which is consistently evaluated with NLO PDFs.

Figures 5 and 6 compare the O(αsα) correction δ ini−fin
αsα

= ∆σ
NNLOs⊗ew

ini−fin /σLO with the two ver-

sions δαs
δα and δ ′

αs
δα , respectively. The corrections to the W-boson transverse-mass distribution

are approximated by the naive factorization δ ′

αs
δα quite well. The preference of the factorization

variant δ ′

αs
δα over δαs

δα can be interpreted upon inspecting the difference between σNNLOs⊗ew and

the factorized ansatz σ
NNLOs⊗ew

naivefact ,

σNNLOs⊗ew −σ
NNLOs⊗ew

naivefact

σLO
= δ ini−fin

αsα
−δ ′

αs
δα , (3.4)

i.e. the validity of the factorization approximation σ
NNLOs⊗ew

naivefact is signalled by a small difference be-

tween δ ini−fin
αsα

and δ ′

αs
δα . Naive factorization works for the MT,νl distribution, which is rather insen-

sitive to any recoil effect of the W boson with respect to additional jet emission. The factorization

ansatz fails, however, for the distribution in the lepton transverse momentum, which is sensitive

to the interplay between QCD and photonic real-emission effects. It remains to be seen whether

the O(αsα) corrections to the pT,l distribution can be reproduced by attaching a photonic shower,

which is based on the asymptotics of collinear photon emission, to a QCD-based prediction.

The results shown in Figs. 5 and 6 are obtained by photon recombination, which combines

collinear photons and leptons to a quasi-particle as described in Refs. [8, 9], while the NLO EW

results shown in Fig. 2 involve “bare muons” without any photon recombination. Photon recombi-

nation restores the level of inclusiveness required by the KLN theorem to imply a cancellation of

the collinear singularity, which enhances the effect of final-state radiation. Photon recombination

typically reduces the size of photonic corrections by a factor of two.

4. Conclusions

Here we have briefly summarized the main results of Ref. [1], where we have shown how the

O(αsα) corrections to Drell–Yan processes can be approximated by the leading term in an expan-

sion about the resonance pole. The quality of such an approximation achieved at NLO strongly

supports the expectation that this approach is sufficient for observables that are dominated by the

8
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resonance, which include, e.g., the ones relevant for precision determinations of the W-boson mass.

The pole approximation classifies corrections into factorizable and non-factorizable contributions.

Our results show that the latter, which link production and decay subprocesses via soft-photon ex-

change, are phenomenologically negligible. The phenomenologically relevant corrections, thus,

are of factorizable nature and can be attributed to corrections to the initial or final states. Again,

the pattern of contributions to the pole approximation at NLO gives a clear picture on the expected

hierarchy in higher orders. At O(αsα), the bulk of corrections will be contained in the combination

of QCD corrections to the production and EW corrections to the decay processes, with a particu-

lar enhancement induced by final-state radiation off the charged leptons. Here we have presented

first preliminary results on those contributions, revealing that the naive factorization of NLO QCD

and NLO EW corrections approximates the O(αsα) corrections to the W-boson transverse-mass

distribution, but not the lepton transverse-momentum distribution, which is particularly sensitive

to recoil effects of the W boson. The completion of our calculation of O(αsα) corrections and the

discussion of their phenomenological implications are in progress.
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