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1. The Knizhnik Zamolodchikov Equation

Let us quickly remind ourselves of the most basic set-upHerKZ equations.

e We consider a free Lie algebiaof wordsw, in a two-letter alphabet on letteesb, and
assign a co-product

Aw= % URV= % uew/u

uv=w ucw

to such words. We allow fau or v to be the full wordw, and identify the @ with the unit,
Iw=wIl =w.

e Evaluation of iterated integrals: we can assign to such svitedated integrals in two differ-
ential forms, saylz/z +» aanddz/(1— z) +» b, which we assign to the two letteasb. This
gives a natural map : L — C such that

P(W1 W) = @(W1)P(W2),
the evaluation of words is an algebra homomorphism for tiélshalgebra.

e The KZ equation for us simply is

dF(@) = <§+L> F(2).

dz z 1-z

The differential forms in it have poles atDc. It pays to compare solutions regular at O
with solutions regular at 1.

e The associato® compares solutions regular at 0 with solutions regular andl,is hence a
constant series in multi-commutators:

® =1+¢(2)[ab]+(3)([a[a b]] — [b.[ab]}) + ...

Note that the KZ equation is a linear differential equatiotisevaluates differential forms in a
manner such that the shuffle product structure is preserved.

2. Generalized version

We now want to generalize the above set-up so as to be flexiblegh to incorporate Dyson—
Schwinger equations (DSE). For them, we still have a Hopélalg structure, an associated Lie
algebra structure such that the dual of the Hopf algebraagttig is the universal enveloping algebra
of that Lie algebra, and we have Feynman rules and the refieatian group equation (RGE).
These structures combine so that we can interpret DSE asaljerd KZ equations, by allowing
for non-linearity and quasi shuffles. We need

e A suitable Lie algebraZ of graphs , with skeleton graphs -graphs free of subdivegen
playing the réle of countably many letteash, - - -.
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e A generalization to non-linear KZ equations, for exampletfe combinatorial DSE

M&ﬁﬂ—f&<ﬁ§0,

dl(:j(zz) _ _92a (iFLLI@j> d72
=

as a generalized KZ equation (which was solved for Yukawarthia [3]). The RGE ensures
that for renormalized Feynman ruldés,

we can set

CDR(Wl [HNTe) Wz) = (DR(Wl)CDR(Wz),

which expresses the familiar fact that the leading logs aterthined by the renormalization
parts, while the non-leading terms can be captured via fooftimutators (see below) or in
terms of a quasi-shuffle product

au We b = a(u; LWe buy) + b(aw e Up) + ©(a,b) (ug We Up),

with ® a commutative and associative map which assigns a new tietéery pair of letters.

The sum over Feynman graphs which appears as a solution ahhimatorial DSE then
dualizes to a series in the dual universal enveloping atgéb(.¥) for a Lie algebra.?.
Terms of highest order in the leading log expansion -elemehinaximal coradical degree-
correspond to highest symmetric powerszf.¢), while the linear terms (in 18/S) are
dual to elements ofZ C % (.¢), and can be filtered themselves according to the lower
central series filtration afZ, such that angle dependence is relegated to commutatdrs, as
the example below (see also [4] for a review of these progedf field theory).

e This formally gives generalized associators involving tircbmmutators and images 6F

~1+m§aamm+m¢aam+que@

So what is©(a,b)? A general answer is given in [2], based on the analysis ingddl an
example is below.

e For full DSE we have iterated integrals of one forms repldmecenormalized Feynman rules
for graphs with subgraphs. An exhaustive classification ygdh—Schwinger equations as
combinatorial fixed point equations and generators of sapfldigebras, covering all known
applications in physics, has been given by Loic Foissy [5].

¢ In analogy to KZ, the question then is what is the structur§obg(I")r?

3. Hall series

A crucial ingredient to tackle such questions is the studjalf series.
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e Start with the Lie algebraZ of graphsI” whose universal enveloping algeb#a(.¥) is the
dual of a Hopf algebr&l with coproduct

Al = yeTr/y.
2

e It has a lower central series filtratior” acquires a descending series of sub-algelifas
L LH> L, where %y, is generated by alk,y] with x € £ andy € 4.

e For this, there is a Hall basis: lexicographical orderinglbélements inZ, for example, let
X1 <Xp<...<[X1,%2] <... (it does not matter which ordering we take as long as we choose
one). We then defing, X] to be a (Hall) basis element ¢ iff both,

1. x,X € . are (Hall) basis elements with< X/,

2. if X =[x",X"], thenx > X"
are fulfilled.

e This then provides next-te-- to leading log expansions filtered by 'quasi’-ne€) @nd
multi-commutators [2].

We now mainly want to exhibit an example. For that, we haversi ionsider the structure of

Green functions in QFT.

4. Structure of a Green function

Here, we summarize the results of [6, 7].

e Our first concern is the decomposition of variables into diogp g and kinematical variables
L,08,60. Here,L =InS/S fixes a scale renormalized &, dimensionless variable®, 6y
(‘angles’) are provided by scalar-products of externaltmexcor mass squares measured in
units of Sor § to completely specify the kinematics and renormalizationditions.

GY({g},L,{6,60}) = L+ O (5 4.1 (X" ({g})) (4.1)
with o _
X'=1+% B (X'Q)(g)),
J
bB}! = 0. Thisiis

e Hochschild closedness:
"B, acts as it would append a first letter.’

e Then, for kinematic renormalization schemes, the groupdafithe Hopf algebra of graphs
is compatible with the additive character of scale variahle

o OF 1, 0.8) = Prio.6) * PP 0.6,)- TiS is the RGE ([6, 7]).

4
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e We have an angle and scale separation ([7]):
O(L,{ 6,60}) = Dgy ({60} * PT_gcard L) * Prin ({6}).-

In general, in these variables, we have renormalized Feynmlas as forest sums using
Symanzik polynomialgy, ¢:

forestsum %‘Pr/f Wi+ o ¢
. = B T
@ Wi+ oF Pr s
Of(L.{6.60}) = > U &
PE-L(Ry) l-l—’r/fq-’f
(E—1)—form

where we now have written scales and angles as argumentssrgibscripts. These are well
defined thanks to the marvellous properties of graph polyalsmvhich spill over also to non-
scalar theories [7, 8].

Note that®R is a polynomial inL when evaluated on any finite graphand that the term linear in
L is given as

OF((6,60) = [ ! LIRS

(="
]P’E’l(RHZ wﬁ/fwfz <(Pr/fLﬂf +<P?1.Ur/f)

We factored a scal8/S) from all second Symanzik polynomials.
But how do we finally get some quasi-shuf@®

5. Periodsfor co-commutative elements

Here, we present an example which is also studied in [4]. Wisider the following (combi-
nation of) graphs img;.

ro= My 7 Fath =M= ‘@,rm: ‘@,r%: @
1

Ssa=Ta3+ > (F34a+T3a)
1
Caa=la3— > (M3a+3a0)

1
P3a=Tl43+ 5 (F3aa+T3ap—T3la)

A(Ss4):834®11+]1®334+®®€}+€} @
A(Czq) = C34 @ T+ 1@ C34+ @ ® {B _ {B@) @

A(p3s) = Paa@ I+ paa.

®

e Look atsz4 which is of co-radical degree two. Clearly,

Pr(sss) = ciczL?+ci L.
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1

ns, IS NOt @ period but rather a complicated functiorfo®.

e In general,c%34 =c
e Assume that we subtract Gt= 6. cl%4 could still depend o). Alas
SO [ (.
i Br \ 2 w?34a 2 L'Ur234b w%ts
B ()q_3 l.UF4 + @'4 wr;g 0]
2 12
L»Ur4 L,Ur3 [(#3 Yr, + fPuLI’rs]
11 n 11 n 1 1 0
= — — — r.
Br \ 2 wgszua 2 L'Urzszu) ,“I"%ts L'Ur24 L/—’é

All angle dependence has been eliminated.

e This is then®dR o O(ws, wy), simply a new period which represents the new le&ems, wy).
Erik Panzer promises me that his methods [9] will produce thimber in due time.

e All completely symmetric insertions of primitive graphsud in integrands involving only
first graph polynomial and define periods corresponding ¢h s1ew letters.

It remains to consider anti-symmetric insertions of graglsresponding to (multi-)commutators.

6. Angle dependence in commutators
e For anti-cocommutative elements likgy angle dependence remains,
®R(Caa) = C34(O)L.
e A simple computation reveals

1

30 = [ (30 +307- -2
! Pr \ 2 wr234a 2 l‘U€34b ‘-I-’r243

@Y — @, ) Qr. (6.1)

R U+ ]
Angle dependence is relegated to anti-cocommutativitys iBrtrue in general [4].
So let us summarize: assume we compuigsay.
We decompose:
Maz= % (P3a+Caa+T3ala).
The product term gives the contribution®@3) (5)L?, which has its home in the symmetric
square ofZ, considered as an element#f(.Z).

p34 gives a new period which we are waiting for. Aogh = c34(0) € %, ¢ £3, carries all

the angle dependence cﬂf34. This opens a vast arena of questions for algebraic geometry
to be answered in the future. It also shows how beautiful aelitevganized the arena of
special functions is which describes any finite order in quarfield theory.
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