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1. Introduction

The exploration of heavy quark production, in particutaaind single-top production, is a cen-
tral issue at today’s (and future) high energy collidersth& LHC present experimental analyses
of tt production reach a level of accuracy of a few percent, argighécision will increase in the
future. This requires on the theoretical side precise ptiedis, in particular within the SM, which
in view of the smallness of the gauge couplings at high easrgieans predictions at higher or-
ders in perturbation theory, especially with respect tacthdpling as of quantum chromodynamics
(QCD), both for cross sections and differential distribns. Notable progress in this context has
recently been made with the computation of the total hadrtriross section to ordex? [1, 2].

As a contribution towards a fully differential NNLO treatnteof tt production at hadron col-
liders, we report, within the antenna subtraction framdwon the construction of double-real and
real-virtual subtraction terms for processes involving pinoduction of a pair of massive quarks by
an uncolored initial stat&at next-to-next-to leading order (NNLO) QCD:

S—QQ+X, (1.1)

where S denotes, for example, af e pair or an uncolored boson. Employing the subtraction
method, the contribution of ordazrs2 to the cross section or to a differential distribution of an
arbitrary IR safe observable associated with reaction) {4.diven schematically by

ONNLO = /cp (dGNRNRLO_dGIENLO)‘{'/cD (do-lfl!l\\I/LO_dGI;IrNLO)
4 3
+/ d0|\\|/|§|/Lo+/ dUNSNLo+/ doinio - (1.2)
@, Py ®3

The exclusive double-virtual cross sectidayy, o involves the (renormalized) amplitudes B+
QQ at tree-level, one-loop and two-loop level. The real-ttorrectiondaRY, , requires the
tree-level and (renormalized) one-loop matrix elementsSe- Q(§g. Finally the computation
of the double-real radiation contributiatoR 5 demands the tree-level amplitud®s- QCSQCS,
ngg and qu@ whereq denotes a massless quark. In general these individualilmatitins
give rise to infrared (IR) singularities. While infrarechgularities from virtual corrections are
obtained immediately after integration over the loop-motag the infrared singularities due to
soft and/or collinear real emission only become explidi¢raintegrating the matrix elements over
the corresponding phase space regions.

Therefore, one introduces subtraction terms, denotedidgy, , anddaoyy, o in (1.2), which
approximate, respectively, the double-real and the rigalal contributions in all their singular
limits and hence regulate their divergences. So, by coctitry the integrals ovedoy o —
dogyLo and oveday, o —doyy, o are finite and can be evaluated numerically in four dimerssion
Furthermore, in order to make the cancellation of IR singfigs explicit in eq. (1.2), the integrals
of these subtraction terms must be computed over the plpase-segions where IR singularities
arise.

Among other methods, antenna subtraction provides a coehplgeneral framework to con-
struct subtraction terms as products of various antenraiturs and reduced matrix elements with
remapped momenta. The antenna subtraction framework Wiaiyrformulated for massless final
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state partons [3, 4, 5], but has been extended to the casdmiti@collisions, both at NLO [6] and
NNLO[7, 8, 9, 10]. In its massless from, the antenna methadded to the successful description
of the infrared structure of three-jet eventseire annihilation at NNLO [11, 12, 13, 14, 15]. Re-
cently, it has successfully been applied to di-jet produrctit hadron colliders [16, 17, 18, 19, 20].
Extending the antenna method to NNLO QCD reactions with imagmal state quarks is an on-
going effort [21, 22, 23, 24, 25, 26]. Intermediate resubtstf production at hadron colliders have
recently become available [22, 26, 27, 28].

2. Massive double-real antenna functions

The subtraction of all double unresolved limitsdayy, o requires new four-parton tree-level

antenna functions: The antennag(Q, 0,0,Q) andAﬁ(Q, 0,9,Q) govern the ordered and photon-
like emission of two gluons between a massive quark-antigpair, whereas8(Q, q,@@) is
employed to subtract singular limits due to the emission wlaasless quark-antiquark pair. They
can be derived by appropriately normalizing the color-oedesquared tree-level matrix elements
of y* — Q@gg andy* — Q(Sqq_and yield the correct unresolved factor in each limit [5, 25,

The integrated subtraction terify, dog,, o involves the corresponding integrated antenna

functions, which are schematically defined as follows:
5 = (C(e)) 2 [ dy, X0 k). (2.1)

whereC(g) = (4m)®e €% /(8m?). Since the antenna phase spaiy,, is proportional to the
normal four-particle phase space, the calculatior:n%;ﬂ<I amounts to the integration of squared
matrix element of 1+ 4 processes over the respective inclusive phase spacemtéeation has
to be performed ird = 4 — 2¢ dimensions. In order to calculate this class of integralsfivae
write them in terms of unitarity cuts of massive three-loopgagator-type integrals [29, 30]. This
step makes them accessible to the powerful techniques évat heen developed for multi-loop
computations, in particular, integration-by-parts reawuc[31, 32, 33, 34, 35] and the method of
differential equations [36, 37, 38].

As a result of the IBP reduction, we can express the integratéenna function&%‘f’Qg '

%Qgg@, and c%’g’Qqqé in terms of 15 master integrals shown in Fig.1. Analytic hesaof these
integrals have been presented in Refs. [25, 23]. In casepofdgy (a), closed-form expressions
for arbitrary d in terms of hypergeometric function$, have been derived by employing phase
space factorization along with standard identities anegirgl representations of hypergeometric
functions. Their expansion nedr= 4 was computed with the help of the computer program
Hy pExp [39].

For the remaining master integrals we have derived a cowgylsgm of first order differential
equations in the variableg® andy [36, 37, 38]. This system has been solved in a bottom up
approach order by order in by the aid of standard techniques. In order to fix the constaht
integration, we have either imposed the vanishing of phpaeesat threshold, which is located at
y — 1, or matched the expressions to the known results in thelesadanity — 0 [40].
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Figure 1: Definition of the double-real master integrals. In the dégmatic representations bold (thin)
lines refer to massive (massless) scalar propagators. riMagiants in the curly brackets below the cut-
diagrams denote irreducible numerators of the integrahd.dbuble line represents the external momentum
a, with g% = s. The dashed lines indicate the particles which are on-shell

By this means, we obtain analytical results for all mastéegrals of Fig. 1 to all relevant
orders in€ in terms of harmonic polylogarithms (HPL) [41] of argument % wheref3 =

\/1—4mg/q?.

3. Massivereal-virtual antenna functions

In order to render the real-virtual cross section for prees®f the type (1.1) finite, we have to
introduce the massive one-loop antenna funct@@ andA3 0’ which can be determined from
the interference of the Born amplitude and the leading aiteading color one-loop corrections
toy" — QQg [5, 42]. These antennae are also requied in their integfateu

ik =€) [y, X301, @Y

with d®y,, being proportional to the ordinary three-parton phase espdBP reduction reveals
that the analytic calculation of the integrated antennatfons 42/31di and dlech amounts to
evaluating 22 master integrals, which are depicted in Eig. 2

In the topologies (a) and (b) of Fig. 2, the dependence ofrttegiands on the loop momentum
and the phase space momenta factorizes such that the resulk® written in terms of ordinary
products of known three-particle phase space integral&Rgff [21]) and scalar one-loop integrals.
For the other master integrals we have derived differeatjaations in the variableg andy in the
same algorithmic fashion as in the case of the four-paretlevel antenna functions (cf. Sec. 2).
We have solved these differential equations in terms ofatgohic harmonic polylogarithms [43,
44, 45, 46).

The necessary boundary conditions have been obtained fn@shiold expansions of the re-
spective integrals which have been calculated by other saéidverefore, the integration constants
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Figure 2: Definition of the topologies for the combined phase spacelaop integrations. In the dia-
grammatic representations bold (thin) lines refer to nvasgnassless) scalar propagators. The double line
represents the external momentgmwith g2 = s. The cut propagators are the ones intersected by the dashed
line.

are given by values of cyclotomoic HPLs at argumggit 1. These quantities can either be com-
puted numerically based on the defining integral repreientaof the cyclotomic HPLs, or one
can exploit the various functional relations among the Iftpenic) HPLs (shuffle relation etc.) in
order to analytically reduce these objects to a smallerfsgiramonly known transcendental num-
bers. The latter approach relies on intensive usage of cenplgebra and has been implemented
by J. Ablinger and J. Blimlein. More details will be given ifudure publication [47].

4. Crosssection for ete — y* — Q(§X at order a?

As a first application and check we compute the inclusive hemark-antiquark production
cross section irete-annihilation via a virtual photon to order? and to lowest order i =
€?/(4m). The ratioR is defined by

_olete 5y = QQ+X) o, (as(H?) 2 (1)
"= olere sy o pu) _%[NC’R +< 2m >(N°_1)R

. (4.2)

2

a2 1

+ (%’; )> (N2 1) (NCR(L'Q—W 2+ 2Trg R(f2)+2TRR,(:2)> +0(ad)
C

In the following, we consider one heavy quark, carrying theeteic chargeeg (in units of the
positron charge) andns massless quark flavors. To ordey, the ratio (4.1) has been known for a
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Figure 3: Exactresults foR? = SRg‘é andR(Nzi = 3(R|(_2c): — R(Sz)a/Z plotted againg8 = /1 — 4mé/s(so|id
line). The renormalization scale is chosen totbe: mg. For comparison, the expansions in the threshold
region (dotted curves) [55, 56] and in the asymptotic redaashed and dash-dotted curves) [59, 60] are
included as well.

long time [48, 49]. To orden?, the leading-color correctioR(L%g, the subleading-color correction
R(SZ% and the massless flavor correcti@ﬁ) receive the following contribution:*R{‘;2> is not discussed
here): The double-virtual correction from the procgss+ Qd(i.e. 2-loop times Born and 1-loop
squared) can be obtained in analytic form from the liteea{®0]. The real-virtual contribution
associated witly* — QCSg (1-loop times Born) involves the master integrals of FigivBereas the
contribution induced by the squared Born amplituges> Q(ﬁggandyk — quq_ can be expressed
in terms of the integrals shown in Fig. 1. Furtherm(ﬂ% receives a contribution from the squared
tree-level matrix element of — QQQQ (in the following denoted bR)), which is completely
finite and will be discussed in more detail below.

The contributions from the various subprocesses exhilpii@kpoles ine of IR origin. Veri-
fying the IR finiteness oR(L@, R(SZ%, anngcZ) as anticipated according to the KLN theorem [52, 53]
provides an important check of our calculations. Indeed fine that in R(L? R(SZ%, and R&Z) all
poles cancel analytically.

As discussed in Ref. [25], our result fé&(fz) is in full agreement with the one of Ref. [54],
which was obtained id = 4 by the aid of different techniques. For the leading andeadihg color
corrections,R(L@ and R(SZ% approximate results in terms of truncated power seriearesipns have
been computed, both, at pair production threlen% (including terms of ordeg) [55, 56, 57]
and in the high energy regias> g, (through ordemyy’/s%) [58, 59, 60]. After expanding our
expression foR(LZC) in the respective regions, we find full agreement with thetexg results to all
available orders. The same is true Rs_f(): in the threshold region. Note that due to the constraint
s> 16m(22, the termR(EZ) can be omitted for center-of-mass energietose to the pair-production
threshold at > 4mé. In the limit mé/s—> 0, the ternR.(Ez) becomes divergent. However, when we
combine the known expressions of the logarithmically echdrand finite terms (R(;) in this limit
(cf. Ref. [61]) with the other contributions t@gzé we recover the massless resmemQ:o = —312.

Finally, Fig. 3 shows our exact expressions Rif) = NCR(SZ(): and R,(\Iz,l = NC(R(L% - R(SZ%)/Z
plotted against the velocit§ in the entire physical region€ < 1.
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5. Summary and outlook

We addressed, within the antenna subtraction framewoektréatment of infrared singulari-
ties that arise in the computation of observables, in paddidistributions, for processes at NNLO
QCD, where a heavy quark-pair is produced by an uncolorédlistate. We constructed the mas-
sive NNLO antenna functions that form part of the doubld-aea real-virtual antenna subtraction
terms and outlined the analytic computation of their indégd counterparts in terms of (cyclo-
tomic) HPLs. Our results include also analytical exprassifor sets of master integrals, which we
expect to be useful for other applications, too.

As a first application and check of our results we derived e&apressions for the order?
corrections to the total heavy quark antiquark productiass section iret e -annihilation. We
verified the analytic cancellation of all infrared polesliese contributions. Furthermore, the finite
pieces are in full agreement with existing (approximatshlts.

The (integrated) antenna functions discussed above prdkiel last missing building blocks
for the numerical calculation of cross sections and diffée¢ distributions for heavy quark pair
production by uncolored initial states at NNLO QCD withiretantenna framework. Future ap-
plications include, for example, the forward-backwardrmasyetry forb- andt-quarks inete -
annihilation.
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