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1. Introduction

The study of interactions of antikaons and η mesons with nucleons and the nuclear medium
has been attracting considerable attention in last years (see [1, 2, 3, 4, 5] and references therein),
and yet, the issue as well as the closely related problem of K− and η nuclear bound states is far
from being resolved. The near-threshold K̄N and ηN attraction generated by the Λ(1405) and
N∗(1535) resonances, respectively, appear to be strong enough to allow binding of the K− and
η meson in nuclei, however, in-medium modifications and energy dependence of the underlying
scattering amplitudes have to be carefully taken into account in relevant calculations.

The present contribution concerns systematic treatments of energy and density dependences
within dynamical and self consistent calculations of K− and η bound states in nuclei (more details
can be found in Refs. [6, 7, 4, 5]).

In Section 2, we briefly discuss in-medium modifications of the K̄N and ηN scattering ampli-
tudes, construct the self energy operator and demonstrate how to incorporate the strong energy and
density dependence of the scattering amplitudes at and near threshold in the calculations of mesic
nuclei. In Section 3, we summarize current status of calculations of few-body kaonic clusters and
present selected results of our dynamical self-consistent calculations of K− nuclear states in heav-
ier nuclei. Section 4 is devoted to an overview of our recent study of η nuclear bound states and
brief summary is given in Section 5.

2. Energy and density dependence of in-medium amplitudes

The near-threshold K̄N and ηN scattering amplitudes are both attractive and strongly en-
ergy dependent in models that generate dynamically the nearby meson-baryon s-wave resonances
Λ(1405) and N∗(1535), respectively.

Current calculations of K−-nuclear quasi-bound states are often based on the K̄N interactions
derived within an SU(3) chiral approach combined with coupled channel T-matrix resummation
techniques [8, 9, 10]. The meson-baryon channels considered in this approach include πΛ, πΣ,
K̄N, ηΛ, ηΣ, and KΞ. Free parameters of the models are fitted to threshold and low-energy K−p
data. The Λ(1405) resonance is generated dynamically and its presence induces strong energy
dependence in the scattering amplitudes FK̄N(

√
s).

The chirally-inspired coupled-channel ηN interaction can be constructed in a close analogy
with the K̄N case [5]. Here, the relevant meson-baryon channels include I = 1/2 states πN, ηN,
KΛ, KΣ, and I = 3/2 states πN and KΣ. Free parameters of the model are fitted to πN → πN
amplitudes for the S11 and S31 partial waves (SAID database [11]) and selected πN → ηN cross
section data.

In our calculations we often applied meson-baryon coupled-channel separable s-wave inter-
actions by Cieplý and Smejkal [10, 12, 13] which are matched to equivalent chiral SU(3) scatter-
ing amplitudes derived from the chiral effective Lagrangian at up to next-to-leading order (NLO).
While the basic features of the K̄N interactions are satisfactorily described already by the leading
order (LO) Tomozawa-Weinberg term, a good reproduction of the πN and ηN data requires NLO
contributions since the relevant data involve dominantly the πN channel which is decoupled from
the ηN channel at LO.
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Solving the coupled-channel Lippmann-Schwinger equations F =V +V GF with the potential
kernels leads to a separable form of in-medium scattering amplitudes Fi j, given in the two-body cm
system by

Fi j(k,k′;
√

s,ρ) = gi(k2) fi j(
√

s,ρ)g j(k′2) . (2.1)

Here, g j(k2) is a momentum-space form factor, j runs over channels, and in-medium reduced
amplitudes fi j(

√
s,ρ) are expressed as

fi j(
√

s,ρ) =
[
(1− v(

√
s) ·G(

√
s,ρ))−1 · v(

√
s)

]
i j , (2.2)

where G is an intermediate state meson-baryon Green’s function:

Gn(
√

s,ρ) =−4π

∫
Ωn(ρ)

d3 p
(2π)3

g2
n(p2)

k2
n− p2−Π(n)(

√
s,ρ)+ i0

. (2.3)

The integration domain Ωn(ρ) is limited by the Pauli principle in channels n involving nucleon. The
self-energy Π(n)(

√
s,ρ) stands for the sum of hadron self-energies in channel n. (The self-energies

are discussed in detail in Ref. [5]). In particular, the meson (h) self-energy Π
(hN)
h = (EN/

√
s)Πh in

the diagonal n ≡ (hN) channel, where the lab self-energy Πh is given by

Πh(
√

s,ρ)≡ 2ωhVh =−
√

s
EN

4πFhN(
√

s,ρ)ρ , (2.4)

depending implicitly on ωh = mh −Bh and on the off-shell two-body momenta k,k′. This self-
energy serves as input in Eq. 2.3 and therefore also in Eq. 2.2 and Eq. 2.1 for the output scattering
amplitude, requires by Eq. 2.4 the knowledge of the same scattering amplitude. This calls for a
self-consistent calculation of the in-medium scattering amplitudes.

Several amplitudes used in our calculations of η nuclear states – denoted GW [14] and M2
(also M1) [15] – are available only in free-space forms. Therefore, appropriate in-medium ver-
sions accounting fo Pauli blocking have been produced in Ref. [4] by applying the Ericson-Ericson
multiple-scattering approach [16]:

FηN(
√

s,ρ) =
FηN(

√
s)

1+ξ (ρ)(
√

s/mN)FηN(
√

s)ρ
, (2.5)

where

ξ (ρ) =
9π

4p2
F

I(κ), I(κ) = 4
∫

∞

0

dt
t

exp(−κt) j2
1(t) . (2.6)

where pF = (3π2ρ/2)1/3 is the local Fermi momentum corresponding to density ρ and ξ (ρ)
accounts for Pauli blocking. These in-medium amplitudes were then used as input within self-
consistent calculations.

In-medium K̄N and ηN amplitudes near threshold are shown in Fig. 1 and Fig. 2, respectively.
Free space amplitudes are presented for comparison. The typical strong energy dependence shown
in the figures is a consequence of the nearby resonances Λ(1405) and N∗(1535).

Figure 1 shows the in-medium reduced scattering amplitudes fKN(
√

s,ρ)= 1/2[ fK−p(
√

s,ρ)+
fK−n(

√
s,ρ)] as function of

√
s for nuclear matter density ρ0 = 0.17 fm−3, corresponding to the

3
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Figure 1: Energy dependence of the c.m. reduced amplitude fKN in the NLO30 model [12] (left: real
part, right: imaginary part). Dotted line: free space; dashed line: Pauli blocked amplitude for ρ0 = 0.17
fm−3; solid line: including also hadron self-energies (‘+SE’) at ρ0. The thin vertical line denotes the K−p
threshold.

interaction of the K− meson with symmetric nuclear matter. The amplitudes were calculated us-
ing two in-medium versions, with and without hadron self energies. The pronounced energy de-
pendence of the scattering amplitude appears crucial in the self-consistent calculations of kaonic
nuclear states. In particular, the real part of the ‘+SE’ amplitude changes from weak attraction
at and above threshold to strong attraction below threshold at energies relevant for self-consistent
calculations of kaonic nuclei.

The nuclear medium effect on the energy dependence of the ηN scattering amplitude is demon-
strated in Fig. 2. The peak structure observed in the figure for ImFηN may be ascribed to the
N∗(1535) resonance generated dynamically in the coupled-channel model. In-medium Pauli block-
ing shifts the resonance to higher energies, making it more pronounced. Implementing hadron self-
energies spreads the resonance structure over a broad interval of energies, practically dissolving it
in the nuclear medium. This behavior is different from that observed for the K̄N system where the
hadron self-energies compensate to large extent for the effect of Pauli blocking and bring the peak
structure back below the K̄N threshold (see Fig. 1). This results in strong in-medium attraction
with little energy dependence at subthreshold energies relevant for K−-nuclear bound states [17].
In contrast, the in-medium ηN amplitudes decrease substantially upon going below threshold and
are weaker than the respective free-space amplitudes. In particular, the relatively large value of the
free-space ReaηN is almost halved for nuclear matter density. This implies that K− bound states
are very likely to exist, whereas η nuclear states may not bind. Similarly, the widths generated by
the imaginary part of the scattering amplitudes are considerably larger for K− than for η mesons.

It is to be stressed that the scattering amplitudes are highly model dependent. The K̄N am-
plitudes calculated within various models are usually close to each other at and above threshold
and differ, often significantly, in the subthreshold region. On the other hand, the ηN scattering

4
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Figure 2: Energy dependence of the c.m. scattering amplitude FηN in the CS model [13, 5] (left: real part,
right: imaginary part). Dotted line: free space; dashed line: Pauli blocked amplitude for ρ0 = 0.17 fm−3;
solid line: including also hadron self-energies (‘+SE’) at ρ0. The thin vertical line denotes the ηN threshold.
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Figure 3: Real (left panel) and imaginary (right panel) parts of the ηN cm scattering amplitude FηN(
√

s) as
a function of the total cm energy

√
s in three meson-baryon interaction models: dashed, GW [14]; solid, CS

[13]; dotted, M2 [15]. The thin vertical line denotes the ηN threshold.

amplitudes differ below as well as above the ηN threshold, with perhaps just one common value
aηN ≈ 0.2−0.3 fm for the imaginary part at threshold. This is illustrated in Fig. 3 for three different
meson-baryon interaction models, GW [14], CS [13], and M1 [15].

The strong energy dependence in the scattering amplitudes FK̄N(
√

s) and FηN(
√

s) has to be
treated self-consistently, as shown in refs. [17, 18, 4]. The point is that in the nuclear medium (for
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A � 1 approximated by the lab system) the argument
√

s in the scattering amplitudes is given by

√
s =

√
(
√

sth−BK −BN)2− (~pK +~pN)2 ≤
√

sth, (2.7)

where
√

sth ≡ mh + mN and Bh and BN are meson and nucleon binding energies, and the momen-
tum dependent term generates additional substantial downward energy shift, since (~pK +~pN)2 6= 0
unlike the case of the two-body cm system.

To leading order in binding energies and kinetic energies with respect to rest masses, the
downward energy shift δ

√
s ≡

√
s−√sth is expressed as

δ
√

s ≈−BN −Bh−ξN
p2

N

2mN
−ξh

p2
h

2mh
, (2.8)

where ξN(h) ≡ mN(h)/(mN + mh). Using the Fermi Gas model for nucleons and the local density
approximation, one gets

δ
√

s ≈−BN
ρ

ρ̄
−ξNBh

ρ

ρ0
−ξNTN(

ρ

ρ0
)2/3−ξh

√
s

ωhEN
2πRe FhN(

√
s,ρ)ρ , (2.9)

where TN = 23.0 MeV at nuclear-matter density ρ0, BN ≈ 8.5 MeV is an average nucleon bind-
ing energy and ρ̄ is the average nuclear density. Expression (2.9) respects the low-density limit,
δ
√

s → 0 upon ρ → 0. For attractive scattering amplitudes, all four terms in Eq. (2.9) are neg-
ative definite, the last one providing substantial downward energy shift. Since

√
s depends on

Re FhN(
√

s,ρ) which by itself depends on
√

s, it is clear that for a given value of Bh, FhN(
√

s,ρ)
has to be determined self-consistently by iterating Eq. (2.9). This is done at each radial point where
ρ is given, and for each Bh value during the calculation of bound states.

3. K− nuclear quasi-bound states

3.1 Few-body systems

The issue of the K−pp quasi-bound state has been attracting considerable interest of theorists
as well as experimentalists for more than a decade [19, 20, 21, 22, 23, 24, 25]. Yet, it is still far
from being resolved. Table 1 summarizes the current status of calculations of K−pp which stands
for K̄NN with isospin I = 1/2 and spin-parity Jπ = 0−, dominated by INN = 1.

The calculations can be devided into two classes: variational calculations (denoted V in the
table) where the complex K̄N interaction accounts for the K̄N–πΣ two-body coupled channels but

Table 1: Binding energies B and widths Γ of K−pp calculated within variational (V) and Faddeev (F)
approaches (in MeV).

chiral, energy dependent phenomenological, static calculations
V [26] V [28] F [27] V [19] F [20] F [21] V [23]

B 16 17–23 9–16 48 50–70 60–95 40–80
Γ 41 40–70 34–46 61 90–110 45–80 40–85

6
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disregards K̄NN–πΣN coupling, and coupled channels genuine three-body Faddeev calculations
(F). The table illustrates that the method of solving the 3-body problem (variational or Faddeev)
is less important that the choice of the underlying interaction model. The K−pp binding energies
calculated using chiral, energy dependent interactions (grouped in the left part of the table) are
considerably lower than those calculated using phenomenological, energy independent interactions
(in the right part of the table). It is a consequence of the substantial difference between the (K̄N)I=0

interaction strengths which yield a quasibound state at ≈1420 MeV in the former case and at
≈1405 MeV in the latter case.

Recently, Barnea et al. [26] performed calculations of three-body (K̄NN)I=1/2 (shown for
Jπ = 0− in Table 1) and four-body (K̄NNN)I=0,1 and (K̄K̄NN)I=0 nuclear quasi-bound states.
The K̄-nuclear cluster wavefunctions were expanded in a hyperspherical basis and the ground-
state binding energies were calculated variationally. The corresponding K̄N → πY widths were
evaluated using the expression:

Γ

2
≈ 〈Ψg.s.|− ImVK̄N |Ψg.s.〉 , (3.1)

where VK̄N sums overall pairwise K̄N interactions. For two-body interactions involved, the AV4’
VNN [29] was used together with an effective energy-dependent VK̄N [22] and a weakly repulsive
VK̄K̄ [30]. In K̄-nuclear clusters, the energy dependent VK̄N(

√
s) was evaluated self-consistently for√

s, expressed near threshold in the form:

√
s =

√
sth−

B
A
− A−1

A
BK −ξN

A−1
A

〈TNN〉−ξK

(
A−1

A

)2

〈TK〉 , (3.2)

where ξN(K) = mN(K)/(mN + mK), B is the total binding energy of the system, TK is the kaon
kinetic energy operator in the total cm frame and TNN is the pairwise NN kinetic energy operator in
the NN pair cm system. A similar procedure was used for the K̄K̄NN cluster (see [26] for details).

Results of the self-consistent calculations by Barnea et al. are summarized in Fig. 4. Since K̄N
amplitudes (and consequently potentials) decrease upon going subthreshold, self-consistent calcu-

10 15 20 25 30 35
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50

60

70

80
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Γ 
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eV
)
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Figure 4: Calculated binding energies and K̄N → πY widths of few-body K̄-nuclear clusters [26].
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lations yield binding energies and widths of the calculated nuclear clusters lower than calculations
performed at threshold, typically ∆B ∼ 10 MeV and ∆Γ ∼ 10− 40 MeV. The results of K−pp
calculations are in agreement with the previous calculations using chiral energy-dependent K̄N
amplitudes [28] (see also Table 1). In view of the low K−pp binding energy B(K−pp)≈ 16 MeV
and relatively large absorption width Γ(K−pp)≈ 40 MeV, it might be difficult to identify the K−pp
quasi-bound state unambiguously in ongoing experiments.

Relatively modest binding was found for the four-body K̄ nuclear clusters, about 30 MeV in
the lowest I = 0 systems, with absorption widths ranging from 30 MeV for K̄NNN to about 80
MeV for the K̄K̄NN quasi-bound state.

It is to be noted that the widths shown in Fig. 4 are due to K̄N → πY decays only. Two-
nucleon K−NN → Y N absorption widths are expected to contribute additional ∆Γ . 10 MeV in
K̄NNI=1/2 system [28] and ∼ 20 MeV in the 4-body clusters [26]. The binding energies of K−

nuclear clusters could also be enhanced by dispersive contributions. Our recent fits to kaonic
atoms [31, 32] suggest that ∆Bdisp ∼∆Γabs, and the binding energies could reach values B(K−pp)∼
25 MeV and B(K̄NNN, K̄K̄NN)∼ 50 MeV.

3.2 Many-body systems

K− nuclear quasi-bound states in many-body systems, as well as η nuclear quasi-bound states
in Section 4, were calculated within the RMF formalism (see Refs. [17, 18] for details). The
interaction of a meson (K− or η) with a nucleus is described by the Klein–Gordon (KG) equation
of the form

[∇
2 + ω̃

2
h −m2

h−Πh(ωh,ρ) ]ψ = 0 , (3.3)

where ω̃h = ωh − iΓh/2 is complex energy of meson (in the case of antikaon containing also the
Coulomb interaction), ωh = mh−Bh, with Bh and Γh the binding energy and the width of the meson-
nuclear bound state, respectively. The self-energy operator (discussed in Section 2) is constructed
self-consistently within a chirally motivated coupled-channel model, using the RMF density distri-
butions in a core nucleus.

We note that the potential Vh and the meson binding energy Bh appear as arguments in the
expression for δ

√
s (Eq.(2.9)), which in turn serves as an argument for the self energy Πh, and thus

for Vh. Therefore, a self-consistency scheme in terms of both VK and BK is required for solving the
KG equation (3.3).

In K− nuclear calculations presented here, we considered two in-medium versions of the scat-
tering amplitudes: the version which takes into account only Pauli blocking in the intermediate
states, and the version (+SE) which adds self-consistently hadron in-medium self-energies (see
Section 2). The K̄N amplitudes were constructed using the in-medium coupled-channel separable
interaction model NLO30 [12] that reproduces all available low energy K̄N observables, including
the latest 1s level shift and width in the K− hydrogen atom from the SIDDHARTA experiment [33].
While the two in-medium versions of the K̄N scattering amplitudes yield by factor 2 different po-
tential depths ReVK at threshold, they give similar depths in the self-consistent calculations with
the subthreshold extrapolation, ReVK ∼ 80−120 MeV, depending on a particular nucleus.

The role of the self-consistent evaluation of the energy dependence of the K̄N scattering am-
plitude – and consequently of the potential VK – is illustrated in Fig. 5. Here, the K− nuclear

8
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Figure 5: K− nuclear potentials in Ca (left: real part, right: imaginary part), calculated with static RMF
nuclear densities and chiral NLO30 amplitudes at threshold (‘Eth’) and with δ

√
s (Eq. 2.9), in the in-medium

version including self-energies (‘+SE’).

potential for 1s state in Ca at threshold (‘Eth’) calculated using the ’+SE’ K̄N amplitude is com-
pared with the potential for the energy shift δ

√
s, evaluated self-consistently according to Eq.(2.9).

The subthreshold extrapolation of
√

s is clearly crucial for the depth of ReVK , calculated using the
‘+SE’ amplitude. The depth of ReVK at threshold is about half of the self-consistently evaluated
potential depth of ReVK(

√
s). The imaginary parts of VK , representing only K−N → πY decays,

are considerably reduced in the self-consistent calculations, thus reflecting the proximity of the πΣ

threshold.
Figure 6 summarizes binding energies and widths of K− quasi-bound states – including ex-

cited states – in selected nuclei calculated self-consistently for δ
√

s of Eq. 2.9, using the ‘+SE’
amplitudes. The widths of low-lying K− states due to K−N → πY conversions are substantially
reduced in the self-consistent calculations as a result of the considerable energy shift δ

√
s towards

the πΣ threshold. On the contrary, the widths of higher excited K− states are quite large even if
only the pion conversion modes on a single nucleon are considered.

Finaly, Table 2 shows binding energies BK and widths ΓK of the 1s K− nuclear quasi-bound
states in O and Pb, calculated using the ‘+SE’ scattering amplitudes. The results of fully dynamical
RMF calculations which take into account the polarization of the nuclear core by the strongly bound
K− meson, are compared with the static RMF scheme in the first 2 blocks. It is to be stressed that
the present chiral model of K−–nucleus interaction does not account for the absorption of K−

mesons in the nuclear medium through non-pionic conversion modes on two nucleons K−NN →
Y N (Y = Λ,Σ). To estimate the contribution of two-nucleon absorption processes to the decay
widths of K− nuclear states we introduced phenomenological term into the K− self-energy:

ImΠ
(2N)
K = 0.2 fY N(BK)W0ρ

2, (3.4)

where W0 was fixed by kaonic atom data analysis and fY N(BK) is kinematical suppression factor

9
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Figure 6: Binding energies BK (left panel) and widths ΓK (right panel) of K− quasi-bound states in selected
nuclei, calculated self-consistently with static RMF densities and the ‘+ SE’ NLO30 scattering amplitudes.
K−NN → Y N decay modes are not included.

taking into account reduced phase space available for decay products of K− nuclear bound states
[34]. When phenomenological terms are included to account for 2N absorption processes K̄NN →
Y N, the absorption widths ΓK ∼ 50 MeV become comparable to the binding energies BK for all
K− nuclear quasi-bound states, exceeding considerably the level spacing. Our results should thus
discourage attempts to search for isolated peaks corresponding to K− nuclear quasi-bound states in
many-body nuclear systems.

Table 2: Binding energies BK and widths ΓK (in MeV) of the 1s K− nuclear quasi-bound states in O and
Pb, calculated self-consistently using NLO30 ‘+SE’ amplitudes. Dynamical and static RMF schemes are
compared in the first two blocks and phenomenological K̄NN → Y N decay modes are included in the last
block (‘+2N abs.’).

dynamical static static + 2N abs.
BK ΓK BK ΓK BK ΓK

O 54.7 17.2 57.8 16.4 53.7 46.4
Pb 88.8 14.9 89.1 14.8 88.0 55.3

4. η nuclear quasi-bound states

Free-space near-threshold ηN scattering amplitudes FηN(
√

s) are highly model dependent, as
was shown in Fig. 3 for three selected amplitude models (GW, CS, and M2). This model depen-
dence manifests itself in the calculations of η nuclear quasi-bound states. In Fig.7, we present
binding energies Bη and widths Γη calculated for 1sη nuclear states in core nuclei from 12C to
208Pb using five representative ηN amplitude models, namely M1, M2 [15], GR [35], CS [13], and
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0 10 20 30 40
A

2/3

0

5

10

15

20

25

30
B

η (
M

eV
)

C

Mg

Ca

Zr

GW

Pb

M2

M1

GR

CS

0 10 20 30 40
A

2/3

5

10

15

20

25

Γ η (
M

eV
)

C

Mg

Ca

Zr

GW

Pb

M2

M1

CS

GR

Figure 7: Binding energies (left) and widths (right) of 1sη nuclear states across the periodic table calculated
self consistently using the M1, M2 and GW subthreshold ηN scattering amplitudes within a dynamical RMF
scheme, see text.

GW [14]. RMF equations of motion, along with the KG equation (3.3), are solved self consistently
[4], thereby allowing for core polarization by the η meson. It si to be noted that the core polariza-
tion effect on Bη and Γη was found in all cases displayed here to be less than 1 MeV. The use of
static nuclear densities is thus acceptable for not-too-light nuclear cores.

The left panel of Fig. 7 demonstrates that for each of the input ηN amplitude models the
binding energy increases with A and tends to saturate for large values of A. The hierarchy of the
curves reflects the strength of the ReFηN(

√
s) input in the subthreshold region (compare Fig. 3).

The M1 and M2 amplitudes are too weak to produce the 1sη bound state in 12C; the onset of
binding for the weaker M1 amplitude is shifted to around 40Ca. This illustrates the effect of the
suppression of ReFηN(

√
s) due to self-consistent treatment of its energy dependence. Namely, the

M1 amplitude is the closest one on shell to the Haider-Liu amplitude [36] which was used by these
authors to argue for 12C as the approximate onset of η nuclear binding. In contrast, ReFηN(

√
s) of

the GW model is sufficiently strong to bind the 1sη state in 12C and even in lighter core nuclei, in
spite of the suppression it undergoes here by forming its in-medium version and dealing with its
energy dependence. The GW amplitude model admits the 1sη bound state in 4He with a binding
energy of 1.2 MeV and a width of 2.3 MeV, both calculated using a static 4He density.

The right panel of Fig. 7 shows substantial differences between the absorption widths Γη

calculated using the above mentioned models. Here, the CS and GW model produce relatively
small widths of order 2 and 4 MeV, respectively, uniformly across the periodic table. On the other
hand, the other models give much larger widths which increase with A. Particularly the M1 and GR
models predict widths of order 20 MeV. This reflects partly the energy dependence of ImFηN(

√
s)

in the subthreshold region, which is quite distinct in each one of the amplitude models, and partly
the difference in the in-medium renormalization arising from the ReFηN(

√
s) input. For instance,

the large value of subthreshold downward energy shift due to the GW subthreshold amplitude
(57 MeV at ρ0 vs. 37 MeV in the M1 model) causes a particularly large reduction in the strength
of the ImFηN(

√
s) input for the GW amplitude model.

11
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Figure 8: Binding energies (left) and widths (right) of 1sη nuclear states across the periodic table calculated
using the CS and GR ηN scattering amplitudes with different procedures for subthreshold energy shift δ

√
s.

In order to illustrate the role of the energy dependence of the ηN scattering amplitudes in self-
consistent evaluations of η nuclear states, it is instructive to apply our self-consistency scheme,
based on δ

√
s of Eq. (2.9), to the GR in-medium energy- and density-dependent ηN interaction,

and to compare the results with those obtained by GR using a density-independent δ
√

s = −Bη

self-consistency requirement applied in Ref. [35]. This comparison is made in Fig. 8 where the
in-medium CS model results are also included using Eq. (2.9) for subthreshold energy values for
comparison (marked δ

√
s in the figure). The left and right panels exhibit 1sη -nuclear binding

energies and widths, respectively. All calculations in the figure include self-energies and coupled-
channels evaluation of Pauli blocking.

Comparing binding-energy and width results obtained by applying different self-consistency
procedures in Fig. 8, one sees that our δ

√
s scheme (Eq. (2.9)) reduces considerably the GR binding

energies and widths with respect to the original calculations of Ref. [35] that used a δ
√

s = −Bη

procedure. However, even the reduced GR widths are still quite high, 20 MeV and over, suggesting
that η-nuclear states will be extremely difficult to resolve if the GR model is the physically correct
one.

Considering the CS results one again notes the remarkable smallness of the calculated widths
shown on the right panel of Fig. 8, with values about 2 MeV (see also Fig. 7). It is to be noted
that the widths calculated here do not include contributions from two-nucleon processes which
are estimated to add a few MeV. We therefore anticipate that 1sη and, wherever bound, also 1pη

nuclear states could in principle be observed if the CS model turns out to prove a realistic one.
Finally, in Fig. 9 we compare η-nuclear single-particle spectra across the periodic table eval-

uated self-consistently using two in-medium models, GW [14] (left panel) and CS [13] (right
panel). These dynamical calculations include Pauli blocking, using Eqs. (2.5) and (2.6) for GW, and
the coupled-channel approach discussed in Sect. 2 for CS. The latter model also incorporates in-
medium hadron self-energies, resulting in 2–3 MeV lower binding energies. The widths calculated
in both models are remarkably small (see Fig. 7). For these two models η-nuclear single-particle
bound states have a chance of being observed, provided a suitable production/formation reaction
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Figure 9: Binding energies (left) and widths (right) of 1sη nuclear states across the periodic table calculated
self consistently using the M1, M2 and GW subthreshold ηN scattering amplitudes within a dynamical RMF
scheme.

is found. Other models studied by us produce either too large widths or are too weak to generate
η-nuclear bound states over a substantial range of the periodic table.

5. Conclusions

In this contribution, we presented our recent self-consistent calculations of K−- and η- nuclear
quasi-bound states using scattering amplitudes constructed within meson-baryon coupled-channel
(mostly chirally - inspired) models. We focused on the role played by the underlying meson-baryon
subthreshold dynamics. We demonstrated how the energy dependence of the meson-nucleon in-
medium scattering amplitudes transforms into density dependence of the meson self-energies.

Self-consistent calculations of K− nuclear states yield sizable K− absorption widths which are
comparable or even larger than the corresponding binding energies. This suggests that an unam-
biguous identification of such quasi-bound states in ongoing experiments would be an extremely
difficult task.

The in-medium subthreshold ηN amplitudes relevant for calculations of η nuclear bound
states are substantially weaker than the ηN scattering length. The relatively large downward energy
shift in our self-consistent approach leads to bound state energies and widths which are consider-
ably smaller than those evaluated in comparable models. The small widths calculated in the CS and
GW models might encourage further experimental searches for η nuclear bound states. However,
the small widths, as well well as the values of the binding energies are strongly model dependent –
other models predict substantially larger widths. To date, the only claim of observing an η nuclear
bound state is in the reaction p+27 Al→3 He+25

η Mg→3 He+ p+π−+X reported recently by the
COSY-GEM collaboration [37].
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