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 In the J-PARC linac, due to its high intensity H
-
 beam, significant beam loss has been observed 

at a downstream straight beam line section called ACS (Annular-Coupled Structure linac). The 

loss is mainly due to a proton which is produced by double electron stripping of the H
-
 beam by 

residual gas inside the beam pipe, and the titanium beam pipe. We have developed a detector 

system consisting of eight planes of the scintillating fiber detector in order to measure proton 

tracks emitted from the beam pipe of the J-PARC linac. The system measures the position and 

the time-of-flight of a charged particle track in a small solid angle. We show angular and energy 

distributions of proton tracks measured in 2012-2013. We also show comparison of the results 

with simulation. 

 

Technology and Instrumentation in Particle Physics 2014 

2-6 June, 2014 

Amsterdam, the Netherlands

                                                 
1
 

  Speaker 

 
P
o
S
(
T
I
P
P
2
0
1
4
)
0
8
3



P
o
S
(
T
I
P
P
2
0
1
4
)
0
8
3

P
o
S
(
T
I
P
P
2
0
1
4
)
0
8
3

Scintillating Fiber Detector at J-PARC Linac Olga A. Konstantinova 

 

     2 
 

 

1.Introduction 

Due to the high intensity H
-
 beam, significant beam loss has been observed at the ACS 

(Annular-Coupled Structure linac) section in the J-PARC linac [1-4]. Its schematic layout and 

designed operation parameters achieved in 2012 are shown at Fig. 1 [1]. The highest radiation 

level was measured to be a few 100 Sv/h in 2012. The beam loss distribution measured with 

Ar-CO2 proportional counters in the z-position (along the beam line), and simulated distribution 

are shown at Fig. 2. The peaks measured at z = 30-110 m are due to X rays emitted from RF 

cavities. High beam loss signals are detected in the ACS and L3BT sections. 

The beam loss signal amplitude is supposed to be dependent on the residual gas pressure 

(see Fig. 3). The data obtained by the proportional counters is plotted as a function of the 

pressure in the beam duct. Thus we suggest that the beam loss is caused by electron stripping of 

the H
-
 beam by residual gas in the beam duct. 

 

Figure 1: A schematic layout of the J-PARC linac. 

 

 

Figure 2: Beam loss measured with proportional counters (squares), and simulated beam loss 

(solid lines) as a function of the z-position along beam line (m) at the J-PARC linac. 
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Figure 3: Beam loss signal amplitude measured with the 

proportional counter as a function of the pressure in the 

beam duct. 

 

2.Detector System 

The beam loss mechanism due to residual gas interaction of H
-
 is shown ta Fig. 4 [5-6]. If 

an H
- 
has interacted with an atom in residual gas, it is converted to H

0
 by losing an electron. 

Since H
0
 is a neutral particle, it is not focused by quadruple magnets and retains its momentum 

vector at the interaction since the binding energy between an electron and H
0
 is only a few eV. 

Then, most of H
0
s hit the beam duct. An H

0
 passing through the beam duct loses one more 

electron with 100% probability to become H
+
. Thus, H

+
s are emitted from the surface of the 

beam duct. 

As far as an H
+
 is produced from an H

-
 by double electron stripping, the measured number 

of H
+
s is same as the number of lost H

-
s. The goal of the present detector system is to measure 

the number of H
+
s, namely protons emitted from the beam duct. The detector is required to 

measure a charged particle track in a high rate (~1 MHz/cm
2
), and it has to distinguish a proton 

of 50-100 MeV from an electron of =1. The detector system is designed as shown as Fig. 4 

with eight detector planes made of plastic scintillating fibers. The upstream 4 planes are 

separated from the downstream 4 planes by about 1.6 m for the time-of-flight measurement. The 

upstream two planes measure horizontal positions and the other two planes measure vertical 

positions. Each plane consists of 16 of 4 x 4 x 16 mm
3
 scintillating fibers as shown in Fig. 5. 

Each pair of planes is optically connected to a multi-anode photomultiplier (PMT) (Hamamatsu 

H8500C) via light guide fibers. 

The detector system is installed in the upstream part of ACS section as shown in Fig. 6. 

The upstream and downstream sets of planes can be moved in the horizontal and vertical 

directions remotely with stepping motors in order to measure tracks at different positions and 

angles. PMT signals of each channel are transmitted via coaxial cables to the amplifiers at the 

10 m above ground level. The trigger signal of a charged particle track is defined as a 

coincidence signal of the 12th dynode signals of the 4 PMTs. The dynode signal serves as 
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analogue sum of signals in all the 64 channels of a PMT. Therefore, the trigger signal should be 

generated when a charged track passes through the 8 fiber planes. The trigger signal is used as a 

gate signal for the QDC (Charge-to-digital converter) to measure the signal amplitude, and used 

for the common stop signal of the TDC (Time-to-digital converter) to measure the signal timing. 

 

 

Figure 4: A schematic view of an H
+
 detection with the detector system. 

 

 

 

Figure 5: A scintillating fiber plane. Figure 6: The detector system installed in 

the ACS section. 

 

3.Results 

We studied the possible background particles using the GEANT4 code to simulate the H
-
 

electron stripping processes, which includes the geometry of the beam duct, magnets, and RF 

cavities, and the physics processes of H
-
 and H

0
 electron stripping. Fig. 7 shows energy 

distributions of protons, neutrons, gamma-rays and electrons produced around the detector z-

position. At energy above 60 MeV, proton signals are dominant, while at energy at 30-60 MeV, 

the main background is neutrons and the signal-to-background ratio is 1-5. Electrons and 
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gamma rays have significant contributions only at energy less than 1 MeV. Since only a charged 

particle passing through the fiber planes can be detected, in the above background, only 

electrons can be background. In such case, the background can be rejected by requiring the 

time-of-flight cut for =0.31-0.43 (corresponding to the energy of 50-100 MeV) for protons. A 

neutron could be detected if it has interacted with protons in the fiber and is converted to a 

proton which passes through the fiber planes. However, such a nuclear interaction probability is 

small (~2.8%). 

 

Figure 7: Simulated energy distribution for protons, neutrons, 

gammas, and electrons around the detector z-position. 

 

Three-dimensional straight tracks were reconstructed in (z, t, x) or (z, t, y) space with 

horizontal 4 planes and vertical 3 planes respectively (signals at the vertical most downstream 

plane were not read out by electronics). We reconstruct a straight line connecting hits on the 

outmost planes, and search for hits on the inner planes closest to the track projection. Figure 8 

shows the residual distribution at the H2 plane. Two signal peaks due to the fiber width are 

clearly seen. 

Then, for each track, we calculate the time-of-flight as the time difference between a pair 

of planes as shown in Fig. 9. Only a single peak corresponding to protons is seen, while no peak 

corresponding to =1 (to electrons) is observed. In order to extract the number of protons, we fit 

the distribution with a Gaussian function (accidental background) and with a Lorentzian 

function (signal) and obtained the number of protons as the integral of the fitted Lorentzian 

function. 

The number of the protons per beam pulse (with 600 s width and 25 Hz repetition) is 

derived using the following relation; 

  
      

      

     

    
 

where Ntrack is the number of reconstructed proton tracks, Npulse is the number of beam pulses, 

Ntrig is the number of triggers per beam pulse, and NDAQ is the number of triggers collected by 

the data acquisition system. 

The proton rate per beam pulse per solid angle is calculated as the following formula; 
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where xxand y (y) are the mean (rms) of the track angle distribution in the z-x plane 

and the z-y plane, respectively.  

 
 

Figure 8: Residual distributions of a fiber hit in the 

horizontal position (horizontal axis) and the time 

(vertical axis) with respect to the projected track 

position at H2 plane. 

Figure 9: Time-of-flight distribution (ns) at x=4.6 

deg. The signal peak (red line) corresponds to the 

protons, the blue line is its Gaussian fitting and the 

green line corresponds to the electrons signal. 

 

Fig. 10 shows the proton rate (deg
-2

) as a function of x. Each data point corresponds to the 

rate at a geometry configuration of the upstream and the downstream detector sets. Each color 

denotes x dependence at a fixed x-position of the upstream detector set (xup). The distributions 

peak around x=5-6 deg. The simulated angle distributions shown as dashed lines also peak at 6 

deg. correspondingly. The width of the measured distribution is consistent with the simulation at 

xup=100 mm, but smaller at xup=300 and 350 mm, and wider at 200 mm. Also the rates are not 

ordered in xup, but it rather decreases with the measured time (the order in time is 300 mm, 350 

mm, 100 mm, and 200 mm), which may suggest radiation damages of the scintillation fibers, 

but detailed investigation is necessary. Table 1 summarizes integrated rates over the solid angle 

per z-position (m
-1

), and also the ratio of the measured number of H
+
s over that of H

-
s per beam 

pulse (2.5x10
13

). The measured ratios are 27-67% of the estimated ratio from the residual gas 

pressure (2.7x10
-8

). The smaller measured ratios may be due to inefficiency of the detector 

system which has not been corrected yet. 

The mean proton energy as a function of x, shown at the Fig. 11 is compared with the 

simulation. The simulated energy of ~90 MeV is consistent with the measured energy within ±

25 MeV at x=3-8 deg. A slight increase seen in the simulation at x=2-5 deg. may be due to 

reduction of the beam loss because of smaller effective thickness of the titanium beam duct as x 

increases. This tendency is seen at xup=200, 300, and 350 mm. Although at x>8 deg. sudden 

decrease is predicted by the simulation, the data does not follow this and only slight decrease is 

observed, which has not been understood yet.  
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The z-position of the closest approach of the track to the beam axis at an upstream position 

(see Fig. 12) should reflect the beam loss source position. At xup=300 and 350 mm the 

distributions peak around z=4.5-4.0 m upstream from the detector system, while at xup=100 and 

200 mm the distributions peak around z=2.0-2.5 m upstream from the detector system. We need 

to apply efficiency and acceptance corrections to understand the source distributions. 

 

  

Figure 10: Proton rates per beam pulse as a 

function of x (deg). 

Figure 11: Mean kinetic energies (MeV) as a function 

of x (deg). 

 

 

 

Figure 12: Proton rates as a function of the closest 

approach z-position (m) of the track to the beam axis. 

 

 

 

 
P
o
S
(
T
I
P
P
2
0
1
4
)
0
8
3



P
o
S
(
T
I
P
P
2
0
1
4
)
0
8
3

P
o
S
(
T
I
P
P
2
0
1
4
)
0
8
3

Scintillating Fiber Detector at J-PARC Linac Olga A. Konstantinova 

 

     8 
 

 

Table 1: Proton rates per beam pulse and the H
+
/H

-
 ratios. 

xup (mm) dN/dz (m
-1

) NH+/NH- 

100 316538 1.27x10
-8

 

200 180189 7.21x10
-9

 

300 441681 1.77x10
-8

 

350 211315 8.45x10
-9

 

 

4.Summary and Prospects 

We measured the absolute beam loss rate for the first time at the J-PARC linac, by 

measuring H
+
 emitted from the beam duct, using the scintillating fiber detector. We 

reconstructed charged particle tracks passing through seven fiber planes. The time-of-flight 

corresponds to the protons. We measured the proton rate per unit source length of (1.8-4.4) x10
5
 

(m
-1

) and the corresponding H
+
/H

-
 ratio of (0.72-1.77) x10

-8
, which is close to the estimation 

from the residual gas pressure of 2.7x10
-8

. The distributions of the horizontal angle x which 

have the peaks at 5-6 deg. are consistent with the simulation. The mean proton energies of 80-

115 MeV are in a good agreement with the simulated value of 90 MeV within ±25 MeV. 

We are going to study efficiency and acceptance of the detector and apply the corrections. 

We are also going to evaluate radiation effects. From Oct. 2014, we will restart proton 

measurements at downstream of the ACS section. 

This work is supported by Grant-in-Aid for Exploratory Research No. 23656063 and 

Grant-in-Aid for Scientific Research (C) No. 24510134 from JSPS.  
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