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A preliminary experiment and usage of the phase camera is reported on here. The phase camera

is a frequency selective wavefront sensor of the laser beam, which is utilized for observing phase-

modulated laser beam (sidebands) in an interferometric gravitational wave detectors. The laser

modulation/demodulation technique plays an essential role in readout of the mirror displacement

for accurate position controls. The sideband signals in the power recycling cavity are easily

degraded by mirror aberrations in the configuration of a marginally stable cavity. Recently, the

phase camera is being applied for monitoring such aberrations in Advanced Virgo. The observed

aberrations will be corrected by CO2 lasers and compensation plates.
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1. Background

The gravitational wave (GW) detectors are now well sophisticated interferometer (IFO) as a
displacement sensor to measure the spacetime deformation by GWs. To operate IFO, it is necessary
to control the position and alignment of mirrors. The Pound-Drever-Hall technique is used to
obtain displacement signals of the mirrors for their control [1]. In this technique, a condition of the
sidebands created by phase modulation is related to the quality of the control directly. The laser
sideband signals become significant not only for the controls but also for the sensitivity of detectors
because the control loops can introduce noise.

The GWs are expected to be detected by the next generation GW detectors. Advanced Virgo,
which is an upgrade of Virgo, is one of them [2]. Advanced Virgo will employ a marginally
stable configuration in the power recycling cavity (PRC). It means that the higher order modes of
cavity are easily exited because the gouy phase becomes close to zero. The main origin of the
higher order modes are aberrations of mirrors, like thermal lensing, substrate inhomogeneities, and
surface shape errors. By such higher order modes, the power recycling gain and included sideband
signals are decreased i.e. controls become unstable or even impossible.

In order to suppress aberrations, a thermal compensation system (TCS) will be utilized [3].
The Hartmann sensor [4] and phase camera will be used in the TCS as the wavefront sensor, which
can make aberration maps, but the Hartmann sensor can detect only thermal aberrations. Instead,
the phase camera becomes useful tool to observe whole aberrations including optical aberrations
in the PRC. According to simulations [5], keeping the PRC at resonance becomes challenging for
aberrations of 5 nm RMS or larger. The phase camera allows to observe the aberrations of 1 nm
level or better. After obtaining the aberration information, it can be corrected using CO2 lasers and
compensation plates [6]. Thus, the phase camera is being developed for observing aberrations in a
GW detector. It is useful not only for the aberration scanning, but also for monitoring the condition
of sidebands in general.

2. Principle

The phase camera is constructed by a combination of the heterodyne detection and pinhole
scanning [7]. As shown in figure1, the heterodyne beam (reference beam) is created by picking
off the main beam of IFO and by shifting frequency using an acousto-optic modulator (AOM).
The test beam, which includes sideband signals made by electro-optic modulator (EOM), is picked
off from an observation point in IFO. After combining the reference beam and test beam at a beam
splitter, the combined laser signal is detected by a photo detector (PD) and demodulated by the beat
frequencies between the heterodyne frequency and phase modulation frequencies. The amplitude
and phase signals are constructed from two different demodulation phases (the so-calledI phase and
Q phase). In addition to this heterodyne detection, a scanner can change a fraction of the wavefront
projected onto the pinhole PD. By scanning the wavefront, mapping patterns of amplitude and
phase are obtained. The mapping patterns show the state of sidebands. All sidebands including
upper and lower sidebands become selective by preparing a suitable heterodyne frequencyfH,
which can make each different modulation frequency (fH, fH ± fp1, fH ± fp2, · · ·).
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Figure 1: Principle of the phase camera. EOM, electro-optic modulator; AOM, acousto-optic modula-
tor; PM, phase modulation; IFO, interferometer; BS, beam splitter;fp, phase modulation frequency;fH,
heterodyne frequency.

3. Use of phase camera in Advanced Virgo

For operating the IFO, five different frequencies are used for phase modulation in Advanced
Virgo. Three detection ports of the phase camera will be placed on the external injection bench,
small external table next to the PR-pick-off minitower, and external detection bench, to observe
input beam, PRC, and output beam, respectively (see figure2). In order to share the identical
reference beam for every detection port, a fiber coupled AOM is set on PSL bench.

All of the sidebands can be monitored at PC1. It is useful to check the condition of sidebands
before entering IFO. The sidebands of f1, f2, and f4 can be observed at PC2. The sideband of f1 is
used for controlling the common mode of the PRC. The sideband of f4 is prepared to support f1 in
high aberration condition because f4 is insensitive to aberrations due to a low finesse in the cavity.
The aberration map is obtained from a subtraction between phase patterns of a sideband of f1 and
it of the carrier because these two patterns should be identical in an ideal IFO (no aberration).
The information of aberration map from PC2 is fed back to CO2 laser. The CO2 laser will make
a correction pattern of the aberration onto a compensation plate placed on near side of the front
mirror. The f2 sideband, which is used for controlling the signal recycling cavity, is monitored at
PC3. Also, the aberration map of the PRC differential mode can be obtained at PC3.

4. Prototype test

4.1 Experimental setup

We are testing the prototype of the phase camera at Nikhef before installation on the Virgo
site [10]. A photograph is shown in figure3. The laser source is a Nd:YAG laser with a wavelength
of 1064 nm and with a nominal power of 500 mW. The test beam is made by a broadband EOM
(DC to 250 MHz) without interferometer for simplicity. The reference beam is created by a fiber
coupled AOM with a frequency shift of 80 MHz. By selecting the heterodyne frequency of 80 MHz,
each modulation frequency has individual frequency, i.e. both the upper and lower sidebands (10
sidebands in total) can be probed. A galvanometer (GVS012, Thorlabs inc.) is used as a scanner.
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Figure 2: Installation of the phase camera for Advanced Virgo. Three detection ports of the phase camera
will be installed (PC1, PC2, and PC3). Five lines show different phase modulations (f1 - f5). Each of them
makes both upper and lower sidebands around carrier frequency. PSL, pre-stabilized laser bench; PC, phase
camera; CP, compensation plate; IMC, input mode cleaner; OMC, output mode cleaner.

Figure 3: Prototype experiment at Nikhef. The red line shows the input beam and test beam with a phase
modulation by EOM. The green line shows the reference beam whose frequency is shifted by AOM.

The current PD is New focus 1811 (125 MHz), which has an aperture of 300µm. Demodulation is
performed by ADC/FPGA board (400 MHz clock).

4.2 Preliminary result

A preliminary result is shown in figure4. The phase modulation frequency was 10 MHz and
the modulation index was about 0.06 rad. The coaxial interference pattern in figure4(c) is a spatial
fringe pattern between TEM00 modes of the test beam and reference beam. The edge side of
figure4(d) suffers from low signal to noise ratio. From the subtraction data of figure4(b) and (d),
an aberration mapping can be obtained.
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Figure 4: Preliminary result of the mapping. The vertical and horizontal axises indicate transversal two
directions of wavefronts (arbitrary units). (a); amplitude of carrier, (b); phase of carrier, (c); amplitude of
upper sideband, (d); phase of upper sideband.

4.3 Scanning pattern

The Archimedes’ spiral is planned to use as the scanning pattern. A formula of the Archimedes’
spiral is written asr = aθ , wherer is radius of the spiral,a amplitude of spiral (time dependent),
θ rotation angle. In the Cartesian coordinates, it is rewritten asX = (At/2Ts)cos(2π fst) and
Y = (At/2Ts)sin(2π fst). Here,A is the diameter of scanning area,t time, Ts the total acquisition
time, andfs the rotation frequency of the spiral. The rotation frequencyfs is given by

fs =

√
Np

2Ts
(4.1)

to make an uniform spiral pattern (
√

Np/2 times rotation duringTs; Np is the pixel number). It con-
tains three arbitrary parameters,A, Ts, andNp. However, these values are limited by requirements
and the smallest difference among the demodulation frequencies.

The scanning area is fixed to a diameter of 5 mm, which comes from a typical aperture size
on the optical benches in Virgo. The required minimum density is 100×100 pixels [8] (actually,
128× 128 pixels are used due to a binary compatibility). Even if no limitation of a mechanical
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scanning speed, a total acquisition time of at least 2−5 s (0.03 s) is necessary to distinguish two
different demodulation frequencies. The smallest difference is∆ f = f3− f1 = 2.09 MHz. A four
times smaller frequency bin (about 0.5 MHz) is, at least, necessary to resolve these peaks in the
frequency spectrum. The frequency resolutionfres is related to the acquisition time byTs=Np/ fres.
Thus, the minimum acquisition time is naively estimated fromNp/∆ f = 214/(0.5×106) = 2−5 s.
A simulation result [9] also accord with this estimation. Although a quicker feedback is better
for TCS typically, the scanning speed of 1 Hz or more (i.e. total acquisition time of 1 s or less) is
enough because the thermal effects (aberrations) are expected to be below about 0.1 Hz.

From the above discussion, there are valid ranges of the scanning parameters (Np ≥ 128×128,
0.03≤ Ts≤ 1, corresponding to 64≤ fs≤ 2000). Figure5 shows examples of the scanning pattern
by changing a parameterNp ( fs is also changed by the relation of equation4.1). A sufficient density
is necessary more than (b). In practical terms, the quickest operation is not 0.03 s but is limited by
a performance of the scanner.

Figure 5: Examples of scanning pattern (Archimedes’ spiral). The total acquisition time is fixed at 1 s. (a)
32 × 32 pixels, 16 Hz (the rotation frequency of a scanner). (b) 128× 128 pixels, 64 Hz. (c) 256× 256
pixels, 128 Hz.

5. Components

Components of the prototype are being upgraded after the initial tests as described in the
previous section. The galvanometer produces sound while in operation, which makes it not suitable
for table top experiments. The current PD response (125 MHz) is still too slow to observe every
sideband (the highest modulation frequency is 212 MHz). By considering Nyquist frequency, the
suitable sampling frequency is higher than 424 MHz. The improved and selected components are
shown in this section.

5.1 Scanner

According to the discussion of section4.3, a broad range (sweeping range of 5 mm) and quick
response (more than 64 Hz up to 2000 Hz) is requested for the scanner. A PZT scanner (S-334,
Physik Instrumente (PI) GmbH & Co.) is selected as a suitable scanner, which has a range of
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±25 mrad and high frequency response without sound noise. The necessary sweeping range de-
pends on the distance from the scanner to the pinhole PD. The expected available distance is
20 cm because of the compatibility with other optics. To cover 5 mm (±2.5 mm) with the dis-
tance of 20 cm, an angular range of±12.5 mrad is needed. This is a half of the maximum movable
range. It means this scanner can be operated up to a half of the maximum voltage. Figure6 shows
the frequency response of the scanner. The output voltage is reduced by an increase of the fre-
quency. The half of the maximum point is about 300 Hz. Thus, the operation frequency is limited
in 64≤ fs ≤ 300. The quickest operation becomes 0.25 s in this system to obtain one scanning
pattern (128×128 pixels, 256 Hz). Incidentally, hysteresis of the PZT is suppressed by feedback
controls with strain gauge sensor inside. The resonance of PZT is about 1 kHz, which is higher
than operation frequency.
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Figure 6: Frequency response of the scanner.

5.2 Photo detector

A new PD is being developed. A high speed InGaAs PD (FCI-InGaAs-55, OSI optoelec-
tronics) is selected as the element of the PD. The active area diameter is 55µm that becomes the
pinhole detection. The optical noise equivalent power is 2.66× 10−15W/

√
Hz. The frequency

response is almost flat up to 700 MHz, limited by an amplifier. The RF transimpedance amplifier
is HMC799LP3E (HITTITE), which has 10 kOhm transimpedance over 700 MHz bandwidth and
low noise (46 nV/

√
Hz output noise, corresponding to 4.6 pA/

√
Hz input referred noise at around

100 MHz). By comparing the input noise level to the shot noise of the photodiode (
√

2eIp; e is the
elementary charge andIp is the diode current), the shot noise dominant performance is obtained
when the diode current is more than 66 uA.

5.3 Digital board

By using digital processing unit, it becomes easy to demodulate 11 different frequencies (the
heterodyne frequency and the sidebands of f1 - f5) at the same time. This digital board is also
being developed and assembled with 14 bit ADC at 500 MS/s and Virtex-7 FPGA (Xilinx). This
can measure 32 k pixels per second and have a frequency resolution of about 30 kHz. A measured
standard deviation is 0.3 mrad at 212 MHz (the highest modulation frequency; the lower sideband
of f4).
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6. Summary

The phase camera can observe the laser wave fronts with a frequency selective property. This
is a useful monitor for sidebands, which is significant for the control of mirrors in GW detectors.
An application of this system is in progress for monitoring aberrations, especially in Advanced
Virgo. Prototype experiment is on going at Nikhef. Components have been selected and are being
tested. The quickest scanning is 0.25 s with the selected PZT scanner (by 20 cm distance). It is
sufficient for TCS. A high speed PD and digital board are being prepared.
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