PROCEEDINGS

OF SCIENCE

The FUEL code project

James C. Osborn*

Argonne Leadership Computing Facility
9700 S. Cass Ave.

Argonne, IL 60439, USA

E-mail: osborn@alcf.anl.gov

We give an introduction to the FUEL project for lattice field theory code. The code being devel-
oped (called “ghmc”) was initially targeted for gauge field generation for beyond standard model
theories, and is now growing into a more general framework suitable for analysis too. The de-
sign is based on using the Lua scripting language as a wrapper for existing lattice field theory
libraries, which provides a quick and easy way to develop new calculations. The implementation
currently only supports the USQCD QOPQDP and QDP/C libraries, with support for other opti-
mized libraries planned. We will discuss the current status of the code along with future plans for
development.

The 32nd International Symposium on Lattice Field Theory,
23-28 June, 2014
Columbia University New York, NY

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/


mailto:osborn@alcf.anl.gov

The FUEL code project James C. Osborn

Chroma CPS FUEL MILC QLUA

Inverter MDWF QOPQDP QUDA

QLA QMP QMT
Figure 1: The USQCD Iattice field theory software stack (lower 3 levels) with application codes on top.

The combination of easy to use scripting languages with optimized low level code libraries
is becoming more prevalent in the high performance computing (HPC) community. This combi-
nation provides a convenient way to rapidly develop new computational workflows in a high level
language while retaining the efficiency provided by the optimized machine specific libraries. Here
we present a new application code project, FUEL [1], for Lattice Field Theory (LFT) calculations
that provides a simple yet flexible scripting language interface on top of some of the existing op-
timized LFT libraries developed by the USQCD collaboration [2]. While python tends to be the
most common scripting language in HPC, we have instead chosen the lightweight language Lua
[3] due to its small size, ease of porting and powerful language features.

The initial goal of this project was to develop a flexible yet efficient application for the gener-
ation of gauge configurations of interest to Beyond Standard Model (BSM) physics. This required
allowing for an arbitrary number of colors (N,) in the gauge matrix along with a desire to make
the rest of the code as flexible as possible (i.e. allow arbitrary numbers of dimensions, allow the
addition of arbitrary field types, e.g. scalar fields, etc.). Once it started being used in production
for gauge generation we began extending the analysis capabilities to allow a more complete set of
analysis codes to be built using the same flexible framework.

The current FUEL application is built on top of the USQCD “C” version of the data parallel
library (QDP) and its dependencies (QLA, QIO, QMP) which are described below. It also makes
use of the routines (solvers, forces, etc.) available in the QOPQDP library, which is also built on
QDP. These libraries provide a fairly comprehensive set of features that allows the FUEL code
itself to remain relatively small. Below we will describe the features of the USQCD libraries that
FUEL uses, then briefly discuss the design of FUEL itself and lastly will discuss ongoing and future
development plans.

1. USQCD lattice field theory libraries

For the past 13 years, the USQCD collaboration has been developing a collection of software
for lattice field theory calculations with support from the US DOE SciDAC (Scientific Discovery
through Advanced Computing) initiative. A major result of this effort has been a set of libraries
that provide many necessary features for lattice calculations that can be shared by all application



The FUEL code project James C. Osborn

codes [2]. The ones used by FUEL can be easily downloaded and installed using the “qinstall”
script [4].

The libraries are divided into levels with the lowest being level 1, up to the full routines at level
3. Many of the library names start with “Q” for QCD though they were all designed to support more
general field theories beyond QCD. The libraries being used by FUEL are

o QMP: QCD Message Passing (level 1). This abstracts the message passing interface and
supports single node, MPI and Blue Gene/P and /Q SPI targets.

o QLA: QCD Linear Algebra (level 1). This provides a large set of common single-node linear
algebra routines useful for LFT. The base library is compiled from C code generated by Perl
scripts and has specialized N, = 1,2, 3 versions of all routines in addition to generic runtime
selected N, versions. There are also optimized versions of selected routines for x86 (SSE),
BG/P and BG/Q (QPX) architectures.

o QIO: QCD I/O (level 2). This provides serial and parallel I/O routines for the USQCD
SciDAC file format.

e QDP: QCD Data Parallel (level 2). This provides an abstraction of the fields across the
lattice. It handles distribution of the data across multiple nodes using built in or user defined
layouts, and can apply the large collection of linear algebra routines in QLA to all sites of
the lattice, or on user defined subsets. It also handles communications for global reductions
and nearest neighbor or user defined shifts.

e QOPQDP: QCD OPerations in QDP (level 3). This provides a large collection of common
routines such as solvers (including multigrid for Wilson clover [5]) and force calculations.

Much of the functionality in FUEL comes from the routines available in the QOPQDP library.
The main routines available are: improved gauge action, force and heatbath; staggered (plain,
asqtad and HISQ) smearing, solver and force; Wilson clover solver; Wilson force (no clover term);
and a Domain Wall solver. The most notable routines missing from this list are a clover force
term and generalized Domain Wall variants and force terms. All of these have been planned for
inclusion though the timeframe will depend on other development priorities. So far the main use for
QOPQDP has been in staggered calculations (both lattice generation and analysis) and for Wilson
clover analysis where the use of the existing multigrid code [5] has provided order of magnitude
speedups.

2. Scripting language

There are numerous advantages to pairing a high level scripting language with optimized li-
braries and the idea has been making its way into HPC over the past several years. The most
popular language for this use is currently Python. We initially evaluated using Python as the script-
ing language, but eventually decided against it due to its large code base and the related issues that
arise when porting it to a new HPC architecture such as the Blue Gene/Q. Instead we have gone
with the Lua [3] language with its much simpler code base which is essentially trivial to port to
new architectures, and still provides a powerful and efficient language.



The FUEL code project James C. Osborn

Lua' is a powerful, fast, lightweight, embeddable scripting language [6]. It is developed by a
team at PUC-Rio, the Pontifical Catholic University of Rio de Janeiro in Brazil. The whole inter-
preter is comprised of about 20k lines of ANSI C which makes it easy to compile on virtually any
architecture. It was designed to be embedded in applications and can easily interface with C code.
It is distributed under a liberal MIT license which allows code modification and redistribution. Due
to its small size and permissive license we have decided to distribute the Lua code along with FUEL
so that the user doesn’t have to install these separately.

The FUEL executable (called “ghmc”) uses a slightly modified version of the standard Lua
interpreter. This allows specifying code to execute on the command line along with scripts to
execute and even allows interactive use. The passing of code and scripts on the command line
allows a flexible way to specify parameters to run scripts. For example

ghmc -e "foo=10;bar=20" setup.lua run.lua

will set the global variables “foo” and “bar” which will then be available to the script “setup.lua”
which is executed next, and likewise any global variables set there will be available to the final
script “run.lua”. This allows a production workflow to divide the setup of various input parameters
in arbitrary ways, and eliminates the need for developing new input file formats since the Lua
scripts can already provide that functionality and more.

Another advantage of using a scripting language to drive an application is that it can greatly re-
duce the development time for new code. There is no need to recompile the code after each change
or modify a build infrastructure when adding new files. Many scripting languages (including Lua)
provide a very high level abstraction that makes creating and manipulating complex data structures
easy. Lua also provides garbage collection which will automatically free objects that are no longer
referenced 2. FUEL makes use of this for all its data structures. These features make it an excellent
environment for testing new algorithms or analysis methods.

3. Features and current status

The code itself was originally developed under the name “ghmc” which is still used for the
code and its repository. The FUEL project name was chosen to stand for Framework for Unified
Evolution of Lattices. Although the project has now extended beyond the original goal the FUEL
name remains.

The original development focused on getting lattice configuration generation for staggered
fermions working. This involved plugging in the staggered (asqtad and HISQ) solver and force and
the improved gauge action and force routines available in QOPQDP along with a small set of utility
routines for combining fields, matrix exponentiation, etc. On top of this a very flexible integrator
framework was developed that allows one to specify arbitrary integration patterns (i.e. the time
steps between force calculations and the time step for the corresponding momentum update). Each
force term from the action can be included with its own integration pattern. The patterns for
different forces are simply overlapped and as the field is integrated along in time it applies the

Lua means “Moon” in Portuguese.
2Garbage collection only happens periodically, not necessarily as soon as an object is no longer referenced. It can
be forced anytime if needed.



The FUEL code project James C. Osborn

forces at the appropriate times according to each pattern. This provides a more general method
than using a recursive integration pattern.

The staggered code has now been extended to allow for a larger range of link smearings in-
cluding stout and nHYP. The corresponding gauge smearing routines are all available independent
of the fermion type and can be chained together in arbitrary combinations. The corresponding
force calculations can apply the chain rule to calculate the appropriate force for any user defined
combination.

As the code started being used in production it became clear that having more analysis ca-
pabilities available using the same framework would be very useful. There is now a large set of
operations one can perform on fields which can be used to create sources and perform contractions.
Evan Weinberg at BU has contributed and tested code for staggered two-point functions includ-
ing mesons, nucleons, disconnected diagrams and some gauge fixing code. This code was used
for the 4+8 flavor nHYP project presented at this conference [7] where FUEL was used for the
configuration generation and analysis.

FUEL also has support for the QOPQDP Wilson clover solver and the (non-clover) fermion
force. Wilson configuration generation has been implemented and tested. There is currently code
for meson and baryon two-point functions for both SU(3) and SU(4) gauge fields. The latter is
useful for investigating composite dark matter theories [8]. This code is now being used by the
Lattice Strong Dynamics collaboration in place of the previously used Chroma [9] code, and has
resulted in a significant reduction in run time.

We are also using the code to investigate the use of the multigrid solver in HMC for Wilson
fermions. Preliminary results of this work were presented by Meifeng Lin at this conference [10].

While the code is currently being used in several production projects, it is still a relatively new
code base and is undergoing rapid development so some care is required when using it for a new
project. As when starting any new project it is important to verify that the code is giving the correct
results, either by comparing some cases against other existing code, or by performing consistency
checks within the FUEL code. FUEL now has a regression test suite that covers several of the
lattice generation and analysis routines, though it is not complete. The scripts that are currently
being used for configuration generation were put together to for initial testing and development of
the code and were not designed to be the final interface that the user sees, and are thus not very
friendly for a new user. One of the major ongoing projects is to develop a new set of scripts with
an intuitive interface that will more easily allow a user to manage a complex set of actions and
algorithms and their associated parameters.

4. Development plans

As mentioned above, a major plan for the development of FUEL is to provide an easier to use
interface on top of the existing code. The new interface will allow for more control of the gauge
field generation procedure while trying to make the proliferation of combinations and parameters
more manageable. The final design is still evolving, but has working code for pure gauge evolution.
Work on adding the fermion actions is still ongoing.

A simple example of the current new interface for HMC using just a gauge action is shown
here. The comments (starting with “~—"") give a description of each operation.



The FUEL code project James C. Osborn

L = Lattice{4,4,4,8} —— create lattice
G = L:GaugeField{group="SU",nc=3} -- create SU(3) gauge field
G:Load ("lattice_file_name") -- load gauge field from file

—-— create gauge action
GA = Action{kind="gauge",style="plaquette",beta=6, field=G}
M = G:Momentum() —- create momentum field in Lie group of SU(3)
MA = Action{kind="momentum",momentum=M} —-- kinetic term of action
—-— molecular dynamics integrator of gauge field G, with action GA
—— uses momentum M, trajectory length tau=1 with 40 time steps
I = Evolver{kind="md", style="leapfrog", action=GA,
field=G, momentum=M, tau=1,nSteps=40}
—-— Monte Carlo (Metropolis) step using sum of actions MA, GA
—— using Markov chain trial step from MD integrator I
E = Evolver{kind="mc",markov=I,actions={MA,GA}, fields={G}}
—— do one HMC step
E:Run ()

Right now most of the functionality and performance of FUEL is derived from the QDP/C
library. This library has performed very well on many architectures up to and including the IBM
Blue Gene/Q. However, it was not designed with threading or vectorized layouts in mind. It does
have support for threading using OpenMP (inside of QLA) and there are some optimized routines
for SSE and QPX vector floating point units, but the current implementation is limited in how well
it can scale in the number of threads and length of the vector unit. We are currently planning to
update QDP with a new version that is designed to be threaded and use vector friendly layouts, and
are also investigating strategies to target CPU and GPU architectures with the same code base.

In some cases (mainly for QCD) there are already solvers and other routines optimized for spe-
cific architectures available in the various USQCD SciDAC “level 3” libraries. This includes the
QUDA library for NVIDIA GPUs [11] and the QPhiX library for the Intel Xeon Phi architecture
[12]. We are planning to add support for these libraries which should provide most of the perfor-
mance needed on these architectures for the supported actions. For developing new actions and
algorithms that are not supported by these libraries, we will rely on the QDP library, and especially
its updated version when ready, to provide the flexibility and performance needed for exploring
new areas of physics.

We should note that there is another application, Qlua [13], which also uses the Lua language
on top of the QDP/C library and has a focus on analysis. Qlua presents a fairly complete set of
Lua wrappers for the QDP field operations and uses operator overloading to allow mathematical
expressions to be written. Since writing expressions generally requires the allocation of temporary
fields, FUEL has avoided that approach for now in favor of function calls. We are still investigating
the possibilities for adding operator overloading and an expression syntax for fields into FUEL,
including the possibility of using the existing implementation in Qlua.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, through the



The FUEL code project James C. Osborn

Office of High Energy Physics under the SciDAC program and through the Argonne Leadership

Computing Facility.

References

[9]
[10]
(11]
[12]
[13]

http://jcosborn.github.io/ghmc.
http://usqcd-software.github.io.
http://www.lua.org.
http://github.com/usqcd-software/qinstall.

J. Brannick, R.C. Brower, M.A. Clark, J.C. Osborn and C. Rebbi, Phys.Rev.Lett. 100 (2008) 041601;
R. Babich, J. Brannick, R.C. Brower, M.A. Clark, T.A. Manteuffel, S.F. McCormick, J.C. Osborn and
C. Rebbi, Phys.Rev.Lett. 105 (2010) 201602; J.C. Osborn, R. Babich, J. Brannick, R.C. Brower, M.A.
Clark, S.D. Cohen and C. Rebbi, PoS LATTICE 2010 (2010) 037.

http://www.lua.org/about.html.
R. Brower, A. Hasenfratz, C. Rebbi, E. Weinberg and O. Witzel, arXiv:1411.3243 [hep-lat].

T. Appelquist, E. Berkowitz, R.C. Brower, M.1. Buchoff, G.T. Fleming, J. Kiskis, G.D. Kribs, M. Lin,
E.T. Neil, J.C. Osborn, C. Rebbi, E. Rinaldi, D. Schaich, C. Schroeder, S. Syritsyn, G. Voronov, P.
Vranas, E. Weinberg and O. Witzel, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656 [hep-lat]].

http://jeffersonlab.github.io/chroma.

https://indico.bnl.gov/contributionDisplay.py ?contribld=411&sessionld=10&confld=736.
http://lattice.github.io/quda.

http://jeffersonlab.github.io/qphix.

http://usqcd-software.github.io/QLUA.html.



