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1. Introduction

Low lying spectrum of pure Yang-Mills theory consists of glueballs. Quarks allow glueballs
to decay but their signature is expected to remain in the QCD spectrum. While glueballs have not
yet been discovered experimentally, there are candidates [d]. For a recent review on the status of
glueballs see reference [[]. Glueball correlators can be computed in lattice gauge theory simula-
tions but extraction of glueball masses from correlation functions are extremely difficult because
the correlation functions are dominated by statistical noise. Recent attempts to compute glueball
masses in both pure Yang-Mills theory and lattice QCD using different strategies to combat the sta-
tistical noise have been reported in references [B, 8, B, B, @, B, B, [0, [, [, [3, I4, [F, I8, [32]. In
this article we report on our attempts to reduce the statistical noise on glueball correlators obtained
from simulations of pure SU(3) Yang-Mills theory in 4 Euclidean dimensions.

We explored the scalar (07 ") and the tensor (27 1) channels and to reduce the noise on the
correlators in these channels, we tried the following two strategies (i) construct glueball operators
from large wilson loops with extents of about half a fermi in each direction and (ii) extract masses
from the correlators with fit range as large as possible (0.5 — 1.0 fermi) to reduce contamination
from excited states. The idea to use large Wilson loops to construct glueball operators was proposed
in [IH] but it was only recently that it was coupled to error reduction techniques to estimate the
expectation values of the Wilson loops accurately [[3].

2. Algorithm

For updating the pure Yang-Mills fields we used the Cabibo-Marinari heatbath for SU (3) with
3 over-relaxation steps for every heatbath step. Between each measurement we did 10 full sweeps
of the lattice to ensure that successive measurements could be treated as independent.

The glueball operators were constructed using Wilson loops. For the scalar channel we con-
structed the temporal correlator between the operators (.7 — (27)) at different time slices with
o/ = Re (P, + P; + P,;) and for the tensor channel we took the two operators & = Re (P, — P,;)
and & = Re (P + P,; —2P,;). Here P;; denotes a Wilson loop in the ij plane with ij going over
the spatial directions.

For the noise reduction scheme we used the philosophy of multilevel algorithm [PO]. This
method is particularly useful in theories with a mass gap, where the distant regions of the theory
are uncorrelated as the correlation length is finite.

The principle of multilevel algorithm is to compute the expectation values in a nested manner.
Intermediate values are first constructed by averaging over sub-lattices with boundaries and then
the full expectation values are obtained by averging over the intermediate values with different
boundaries obtained by updating the full lattice. The intermediate averages can be computed in a
nested manner and our innermost noise reduction step was to use a semi-analytic multihit on the
SU(3) links [dI] with which the Wilson loops were constructed. This reduced the fluctuations in
the expectation values of the glueball operators. The multilevel, on top of the multihit, was used to
reduce the fluctuation in the correlators.

In figure M we illustrate our slicing of the lattice and the computation of the intermediate
expectation values of glueball operators (Wilson loops) by performing several sub-lattice updates.
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sub-lattice

Figure 1: Slicing the lattice for the multilevel update. Solid links on slices A,B and C are frozen during the
sub-lattice updates. Thick lines in the Wilson loops indicate that the corresponding links have been replaced
by their multihit averages.

Lattice Size | f (ro/a;) | St lattice Tiypd | loop size
103 x18 | 5.7 | 2.922(9) 3 30 2x2
123 x 18 5.8 | 3.673(5) 3 25 3x3
16 x24 | 5.95 | 4.898(12) 4 50 5%5

Table 1: Simulation parameters for the scalar channel

Lattice Size | (ro/a;) | Siblatice 1 iypd | loop size
122x18 | 5.8 | 3.673(5) 3 70 | 3x3
123 x 20 5.95 | 4.898(12) 5 100 5x5
123 x 20 6.07 | 6.033(17) 5 100 5x5

Table 2: Simulation parameters for the tensor channel

The multilevel algorithm has a number of extra parameters such as the thickness of the sub-
lattice and the number of sublattice updates used in the intermediate averages. Optimal values of
these parametes depend on the observable one is trying to estimate and some tuning of these param-
eters are essential for efficient error reduction. In tables M and @ we record these along with other
simulation parameters for our runs. The scale is set through the Sommer parameter ry computed
for these f values in reference [2Z].

3. Results

In our simulations we could follow the glueball correlators at least upto distances of about one
fermi in the scalar channel and about 0.8 fermi in the tensor channel.
To extract masses from the correlators we fitted them to the form

C(Ar) = A (e*’"Af + e*’"”*A’)) G.1)

where m is the glueball mass and T is the full temporal extent of the lattice. Since the correlator is
symmetric about 7' /2, we fold the data and use only one half of the temporal range for the fits. In
figures O and B we show the scalar and tensor correlators along with the fitted correlators.
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Figure 2: Scalar correlators at § = 5.8 (left) and 5.95 (right)
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Figure 3: Tensor correlators at § = 5.95 (left) and 6.07 (right)
Lattice B | fit-range ma x%/d.o.f
10> x 18 | 5.7 5-9 0.952(11) 0.066
12%x18 | 5.8 6-9 0.906(8) 0.03
16® x 20 | 5.95 5-10 0.7510(15) 0.02
Table 3: Global masses and fit parameters for the scalar channel
In addition to the masses, we also compute the effective masses from the correlators as
C(Ar+1
aAMeff — — log < ( )> (3.2)

(C(an))

where a is the lattice spacing. The effective masses are expected to decrease with increasing At and
finally settle to a stable value. This stable value is an estimate of the lightest mass in the concerned
JPC channel. In figures @ and B we plot the effective masses against A in the scalar and tensor
channels along with masses obtained from the correlator fits (blue line). We see that at the larger
values of At, the effective masses match with the masses from the correlators.

As a cross-check of our results, we compare our data with that reported in reference [[]. Our
data is fully consistent with the results reported there and slightly more accurate.

To get an idea of the advantage of the current algorithm over the naive update algorithm, we
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Figure 4: Effective masses in the scalar channel at 8 5.8 (left) and 5.95 (right). The blue line is the mass
obtained from the correlator fits. The two black lines show the error on the fitted mass.
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Figure 5: Effective masses in the tensor channel at 8 5.95 (left) and 6.07 (right). Again the blue line is the
mass from the correlator fits and the black lines show the error on the fitted mass.

Lattice | B | fit-range ma x%/d.o.f
123%18 | 58 | 47 | 1585(54) | 164
123 %20 | 5.95 6-10 0.938(17) 0.12
123 %20 | 6.07 6-10 0.885(16) 1.6

Table 4: Global masses and fit parameters for the tensor channel

did a few runs for the same computer time using both the methods. For these runs we used the

same 3 values as our main run but smaller lattices. The results are reported in tables B and B. We

see that depending on the channel and f3, the gain in time is significant and can vary from 30 to

more than 700. For the tensor channel at B = 6.07 where we used a 6 x 6 Wilson loop, we did not

manage to get a signal using the naive method. Therefore we could not calculate the gain at that

point.

4. Discussions

The multilevel algorithm is very efficient for calculating quantities with very small expectation

values. Operators in the tensor channel have zero expectation values and are therefore ideal for
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Lattice B | sub-lattice | iupd | loop size | run-time (mins) %”:’[‘“1 gain (time)
10°x 18 | 5.7 3 30 | 2x2 3850 5.7 32
6>x18 | 5.8 3 25 3x3 1000 5.5 30

83 x24 | 595 4 50 55 1100 18 324

Table 5: Performance comparison for Scalar Channel

Lattice B | sub-lattice | iupd | loop size | run-time (mins) %”:’[“[ gain (time)
6°x18 | 5.8 3 50 3x3 12000 27 729

83 %30 | 595 5 100 55 5775 20 400
10° x 30 | 6.07 6 130 6x6 15000 - -

Table 6: Performance comparison for tensor channel

direct evaluation. For scalar operators we have subtracted the non-zero vacuum expectation values
from the operators to get the connected correlators directly.

Correlation functions between large loops have the advantage that they have much less contam-
ination from excited states compared to those between elementary plaquettes. Multilevel schemes
allow us to estimate the expectation values of the large loops with very high precision.

The efficiency of the algorithm depends crucially on choosing the optimal parameters for the
algorithm such as the sub-lattice thickness and updates. These depend on 3 quite strongly. In the
range of B we explored it seems that 0.5 fermi seems to be close to optimal for both the loop size
and the thickness of the sub-lattice.

We observe that this error reduction technique works quite well at least in pure gauge theories.
For a given computational cost, the improvement in the signal to noise ratio is several times to even
a couple of orders of magnitude.

Finite volume effects is the largest source of systematic errors and to avoid them we choose
our lattices such that mL > 9 [3]. For a more detailed discussion we refer the reader to reference
(9]
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