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We present a comparison of different definitions of the topimal charge on the lattice, using
a small-volume ensemble with 2 flavours of dynamical twistexbs fermions. The investigated
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1. Introduction

Gauge fields in QCD can be characterized by an integer nunfiteetppological charge, that
is related to their topological properties. Such propsrpilay a central role in understanding the
structure of the QCD vacuum. At the same time, topologicaltations do not appear in perturba-
tion theory — hence, a non-perturbative approach is esseatinderstand topology in QCD. The
most successful non-perturbative approach is to use ttieelas a regulator. However, for many
years it was unclear how to properly define the topologicalrgh on the lattice. The proposed
definitions had their flaws or were impractically expensiuenerically. Only in the recent years,
significant progress has been achieved with the advent otimsovetically sound definitions.

The aim of this proceeding and an upcoming paper [1] is tdacatly compare the various
definitions of the topological charge and argue that thertiaal progress of the past few years
finally makes it possible to resolve the topological issue®CD in an unambiguous way. The
outline of the current proceeding is as follows. In Sec. 2shertly review the definitions that we
used. Sec. 3 shows our comparison of different definitiomsdistusses it. Sec. 4 concludes.

2. Short review of lattice definitions of the topological chage

The lattice definitions of the topological charge (denotg@pthat we have used are summa-
rized in Tab. 1. Below, we include their short review. For arencomprehensive discussion, we
refer to our upcoming paper [1] and to original papers.

e Index of the overlap Dirac operator. Chirally symmetric fermionic discretizations allow
exact zero modes of the Dirac operator. The famous Atiyalge3iindex theorem relates the
topological charge to the number of zero modes of the Diraaipr.Q = n_ —n,, where
n. are, respectively, the number of zero modes in the positiceim the negative chirality
sector. This definition is theoretically sound [2], it doex require renormalization and it
provides integer values of the topological charge. It is aisique, up to the dependence on
the s parameter of the kernel of the overlap Dirac operator (wkichowever, only a cut-off
effect). This definition has been known for many years andritg disadvantage is practical
— the cost of using overlap fermions is approximately twoeoscbf magnitude larger than
for e.g. Wilson fermions.

e Wilson-Dirac operator spectral flow. This definition is equivalent to the index of the over-
lap Dirac operator [3]. One considers the mass dependertbe efgenvalues of the Hermi-
tian Wilson-Dirac operatob D + m?. Tracing the evolution of each eigenvalue, one counts
the number of net crossings of zero in a given mass rangetheedifference of crossing
from above and from below. This net number of crossings spomrds to the index of the
overlap operator at a corresponding value ofglparameter. As such, this definition has all
the advantages of the overlap index definition, at a lowet. ¢dswever, in practice it might
be difficult to resolve the crossings in an unambiguous waypérticular at coarse lattice
spacings) and hence additional computations may be need¢atify these ambiguities.

e Spectral projectors. This is another fermionic definition, introduced in Refs, . It
defines a projector to the subspace of eigenmod& Bfwith eigenvalues below a certain
thresholdM?. Using this projector, one can stochastically evaluatetdpelogical charge
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nr full name smearing short name type
1 index of overlap Dirac operater= 0.4 - index nonSmea= 0.4 F

2 index of overlap Dirac operater= 0.0 - index nonSmea =0 F

3 index of overlap Dirac operater= 0.0 HYP1 index HYP1s=0 F

4 Wilson-Dirac op. spectral flow=0.75 HYP1 SFHYPXk=0.75 F

5  Wilson-Dirac op. spectral flow= 0.0 HYP1 SFHYP1s=0.0 F

6  Wilson-Dirac op. spectral flow= 0.5 HYP5 SFHYP%=0.5 F

7  Wilson-Dirac op. spectral flow= 0.0 HYP5 SFHYP%=0.0 F

8  spectral projector? = 0.00003555 - spec. proM? = 0.0000355 F

9 spectral projectoré? = 0.0004 - spec. projM? = 0.0004 F

10 spectral projectors12 = 0.0010 - spec. projM? = 0.0010 F

11 spectral projectors12 = 0.0015 - spec. projM? = 0.0015 F

12 improved field theoretic GF GF flow timetg G

13 improved field theoretic G GF flow time 2 G

14 improved field theoretic GE3 GF flow time 3g G

15 improved field theoretic - impr. FT nonSmear G
16 improved field theoretic HYP10 impr. FT HYP10 G
17 improved field theoretic HYP40 impr. FT HYP40 G
18 improved field theoretic APE10 impr. FT APE10 G
19 improved field theoretic APE30 impr. FT APE30 G
20 naive field theoretic APE10 naive FT APE10 G
21 naive field theoretic APE30 naive FT APE30 G
22 improved field theoretic impr. cool. impr. FTimpr.cooD1 G

23 improved field theoretic impr. cool. impr. FT impr. coo0 3 G

24 naive field theoretic impr. cool. naive FT impr. cool. 10 G
25 naive field theoretic impr. cool. naive FT impr. cool. 30 G
26 improved field theoretic basic cool. impr. FT basicco@l. 1 G

27 improved field theoretic basic cool. impr. FT basicco@. 3 G

28 naive field theoretic basic cool. naive FT basic cool. 10 G
29 naive field theoretic basic cool. naive FT basic cool. 30 G

Table 1: The relevant characteristics of each topological chardieitien. For each definition, we give a
number, full name, type of smearing of gauge fields (— = no simgaHYPn = niterations of HYP smearing,
APEN = niterations of APE smearing, GE gradient flow at flow time, cool. = improved or basic cooling,
explained in text), short name (used in plots) and definitype (G=gluonic, F=fermionic).

Q =Tr{yPu}. For chirally symmetric fermions, such a definition is agequivalent to
the index (i.e. it is a stochastic way of counting the zero esddwhile for non-chirally
symmetric fermions it still gives a clean definition, altigbuchirality of modes ist1+
0(a?) and renormalization witls/Zp is needed. In the spectral projector formulation, the
topological charge depends on tkleparameter, however, this dependence is a cut-off effect.
Due to the stochastic ingredient and to cut-off effects etkieacted value of the topological
charge is non-integer, which, however, poses no theotgtioalem. For the computation of
the topological susceptibility using this approach, sekt 8¢
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e Field theoretic. This definition is conceptually very different from the feomic ones dis-
cussed above, as it is purely gluonic. Historically, it is tidest definition, since it is usually
cheap to compute and it is very natural, since in the contmuthe topological charge is
given byQ = #fd4xsuvpgtr[FW(x)FpU(x)]. On the lattice, one has to choose some dis-
cretization for the field-strength tensby, (we apply the simplest discretization using only
plaquettes (“naive”), as well as an improved version usiag 2x 2 and 3x 3 Wilson loops).
This leads to short-distance singularities that need tebmved using some smoothing (“fil-
tering”) procedure. The commonly used methods to do thiskwoetly discussed below.

— Gradient flow — the method recently introduced by Lischer [7] is a rigorvay of
smoothing of gauge fields and it can be shown to be free of giveres to all orders
in perturbation theory [8]. As such, it provides a theomtic sound definition of the
topological charge, which requires no renormalizationis ldlso much cheaper with
respect to the index of the overlap operator. We considegtadient flow using the
Wilson gauge action at flow timesg, 2to and 3.

— Cooling — an iterative minimization of the lattice action, elimiaatrough topological
fluctuations, but keeps large instantons unchanged anéatss the UV noise [9, 10,
11, 12]. This procedure has been extensively used in the pbasin be thought of as a
discrete version of gradient flow. It can be matched to gradiew [13], which gives
it more theoretical justfication. No renormalization isui&gd. We consider 10 or 30
steps of 2 versions of cooling:

x basic cooling — lattice action to minimize contains only 1 plaguettes,
x improved cooling — also 2 and 3x 3 Wilson loops [14].

— APE/HYP smearing— a discrete procedure that eliminates short-distanceufitions,
introduced in Refs. [15, 16]. It requires additive and nplitiative renormalization.
For HYP, we usedr; = 0.75, a, = 0.6 andaz = 0.3. For APE,a = 0.45. Again, we
consider 10 or 30 steps of smearing.

3. Results

3.1 Lattice setup

We use a single ensemble of maximally twisted mass fermibnsl8] withN; = 2 flavours,
with B =3.9,L/a=16,au = 0.004 (corresponding to a pion mass of approx. 340 MeV in irinit
volume),a= 0.079 fm, hence a small physical volumelof 1.3 fm. For more details about this
ensemble, we refer to Ref. [19]. In our upcoming paper [1]wilkalso consider other ensembles
to study the behaviour of topological charge and topoldgioaceptibility towards the continuum
limit.

3.2 Correlation between different definitions

Our main result is the correlation matrix between diffegfinitions of the topological charge,
presented as a colour-coded graph in Fig. 1. We summarieesbene conclusions.

e The general level of correlations between different defing is very high — between 80%
and nearly 100%. In particular, the topological charge asteéd with the field theoretic
definition but with different kinds of smoothing is typica®0-100% correlated.
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naive FT basic cooling 30 | 29
naive FT basic cooling 10 | 28
impr. FT basic cooling 30 | 27
impr. FT basic cooling 10 | 26
naive FT impr. cooling 30 | 25
naive FT impr. cooling 10 | 24
impr. FT impr. cooling 30 | 23
impr. FT impr. cooling 10 | 22
naive FT APE30 | 21
naive FT APE10 | 20
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Figure 1: Correlation matrix between different definitions of thea@gmical charge. Cool colours corre-
spond to low correlations (blue: approx. no correlatior)ileewarm colours denote large correlations (dark
red: approx. perfect correlation). The employed defingiare all the ones contained in Tab. 1.

e Exceptions to these rule are: field theoretic definition withany smoothing (where basi-
cally noise is extracted) and spectral projectors, for Whiee results are contaminated by
the stochastic ingredient (correlation of 40-70% with otihefinitions).

e There is rather significant dependence of the index defmiixtracted both from overlap
and Wilson-Dirac spectral flow) on the mass paramtér certain cases, the correlation can
drop even below 60%. This can be attributed to very bad lycplioperties of the overlap
operator for some values ef in particulars = 0 (honSmear) yields a very small decay rate
of the overlap operator — for more details, see Ref. [20].

e The spectral projector definition shows a significant depand on the paramet&t?. For
the lowest considereld2, the mode number is around 5, which means that not all zer@sod
are counted. For higher values M the correlation with other definitions increases up to
some value where noise starts to dominate and the correlagain decreases.

e Gradient flow shows very similar results at different flowdisnfy, 2to and 3p). Comparing
to other definitions, better correlations are always olekmwith 30 rather than 10 steps of
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Figure 2: Topological susceptibility from different definitions. |Ahe values are renormalized, except
for HYP/APE, where the renormalization was not yet compuggstematically, but the renormalization
factor was estimated to be rather small, correspondingéssthan 5-percent shift upwardsayf'/4. The
employed definitions are all the ones contained in Tab. 1.

smearing or improved cooling, for both the naive and impdostefinition of the topological
charge. This is not true for basic cooling, where corretetitend to be very similar for 10
and 30 cooling steps. This results from the underlying deéeecies between gradient flow
and cooling/smearing. We will comment more on this issuéhédoncluding part of this
proceeding.

3.3 Topological susceptibility from different definitions

In Fig. 2, we show the results for the topological suscelitjtfior our test ensemble. The val-
ues of the susceptibility are for almost all methods wittpprax. 10% of the valuax /4 ~ 0.09.
Hence, although the values are not strictly compatible fiferént definitions, the differences can
plausibly be attributed to cut-off effects. The values viaréce more than 10% off from 0.09 result
from some flaws of the employed definitions: bad locality af thiverlap Dirac operator (index
nonSmeas = 0), too small value oM? in spectral projectors or large UV fluctuations for the field
theoretic definition on non-smoothed gauge fields.
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4. Conclusion

We presented preliminary results of our comparison of dffié definitions of the topological
charge. We found that for all reasonable definitions (witheasily identifiable flaws), the correla-
tion between the values of the topological charge on ouetestmble is rather high and the values
of the topological susceptibility are in a relatively smalhge.

In the near future, we plan to extend this investigation teffilattice spacings to observe
the presumed increase of correlation towards the continlimih Here, we would like to draw
attention to an important aspect related to taking the nantn limit. This is rather unambiguous
in the case of the fermionic definitions. However, for thedfigdeoretic definition, one encounters
the problem of matching the different lattice spacings.sidan be done fully systematically if the
smoothing procedure is gradient flow — one can consider ffwdgical charge at a fixed flow time,
e.g.tp. A problem appears in the case of cooling/smearing, whiomoabe considered as rigorous
procedures in the quantum field theoretic sense, since teajiscrete. Nonetheless, to overcome
this problem, one can perform the matching of cooling/singao gradient flow, thus defining the
correspondence between flow time and the number of coatiregeng steps. This has been done
for the simplest case of gradient flow with the Wilson platgieiction and basic cooling [13], but
it can be extended to more general cases. Thus, to investigatincrease of correlation towards
the continuum limit, we plan to use a strategy to relate thaler of cooling/smearing steps such
that they correspond to the same flow time at different katsjgacings. We emphasize that only in
this way the approach to the continuum limit can be consitlievde reliable.
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