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The charmonium system has several excited states below the energy threshold for decay into D

and D̄ mesons, which can in principle be studied accurately in lattice QCD. Studies that include
many states in the spectrum have typically only been done at one value of the lattice spacing
and with relatively heavy light quarks in the sea. Here we give preliminary results for radial and
orbital excitation energies for charmonium from a calculation on 2+1+1 MILC configurations at
multiple lattice spacings and including physical values for u/d quark masses. We use the HISQ
formulation for c to obtain small discretisation errors and smeared operators to improve excited
state overlap.

The 32nd International Symposium on Lattice Field Theory
23-28 June, 2014
Columbia University, New York, NY

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:b.galloway.1@research.gla.ac.uk


P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
0
9
2

Radial and orbital excitation energies of charmonium B. A. Galloway

Smearing 1 n1 Smearing 2 n2

Coarse 1.5 10 3.0 20
Fine 2.5 20 3.5 30

Table 1: Parameters for the Gaussian covariant smearings applied to the source and sink operators
at different lattice spacings.

1. The Charmonium System

The system of mesons formed of a charm quark and its antiquark is known as charmonium.
The energy states of this system are well-determined experimentally [1] and there are a number
of states below the ‘open charm’ threshold for decay into DD̄. These states can be determined
accurately using straightforward lattice QCD calculations with single meson operators. Previous
lattice studies of many states in the spectrum (see [2] for a particularly impressive example) have
typically only been done at one lattice spacing, and/or with unphysical masses for light quarks in
the sea. With only one lattice spacing, it is not possible to be sure of the value in the continuum
limit, and so studies at multiple lattice spacings are required.

One such study is that by the Fermilab Lattice and MILC Collaborations [3]. However, this
produced preliminary results for the spin-averaged 2S–1S splitting which showed a surprisingly
large disagreement with the experimental value. This provided motivation for us to build on our
earlier accurate calculation of ground state charmonium masses [4] and determine whether we
could also observe such a discrepancy. Here we present preliminary results from our study with
physical light sea quarks at multiple lattice spacings.

2. Lattice Calculation

Two-point meson correlators were calculated using the MILC code, with the HISQ action [5]
used for the valence quarks to give small discretisation errors. Gaussian covariant smearings of
the following form were applied to the source and sink operators to improve overlap with excited
states: [

1+
r2

0 ·D2

4 ·n

]n
n→∞−−−→ exp

(
r2

0 ·D2

4

)
where n is the number of iterations, and the r0 parameter determines the width of the Gaussian.
D is the stride-2 covariant difference operator, necessary because we are working with staggered
quarks and must preserve the ‘taste’ of the meson we are studying. Pairing up propagators with the
smearings in Table 1 applied to different combinations of the sources and sinks results in a matrix
of correlators being obtained.

2.1 Gauge Configurations

We use configurations from the MILC collaboration with 2+1+1 flavours of HISQ quarks in
the sea [6]. Several ensembles exist with a wide range of lattice spacings — we label these ‘very
coarse’, ‘coarse’, ‘fine’, and ‘superfine’. Details of the particular configurations used are shown
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Label a / fm m`/ms Lattice size amc Ncfg×Nt w0/a
(approx.) (L3×T )

very coarse 0.15 1/5 163×48 0.888 1020×8 1.1119(10)
1/10 243×48 0.873 1000×8 1.1272(7)
phys 323×48 0.863 1000×8 1.1367(5)

coarse 0.12 1/5 243×64 0.664 1053×8 1.3826(11)
1/10 323×64 0.650 1000×8 1.4029(9)
phys 483×64 0.643 1000×8 1.4149(6)

fine 0.09 1/5 323×96 0.450 300×8 1.9006(20)
1/10 483×96 0.439 300×8 1.9330(20)
phys 643×96 0.433 565×8 1.9518(7)

superfine 0.06 1/5 483×144 0.274 333×4 2.8960(60)

Table 2: Details of the MILC configurations [6] used in our calculations, along with the bare charm
quark mass used, and the w0/a value determined, on each.

in Table 2. The ensembles utilised include physical light sea quarks, which means we can obtain
results which require little or no chiral extrapolation.

Large numbers of configurations with several time sources have been used for each ensemble
to provide high statistics. The bare charm masses we use are well-tuned by fixing to the ηc mass
and are also listed in Table 2.

2.2 Correlator Fits

We perform Bayesian multi-exponential fits to the matrices of correlators that we obtain, using
the corrfitter library designed for this purpose [8]. We fit with up to n = 9 exponentials, using
a fit function of the form:

n−1

∑
i=0

Ai,scAi,sk(e−Eit + e−Ei(Lt−t))− (−1)t/a ·Bi,scBi,sk(e−Eo,it + e−Eo,i(Lt−t))

where E represents the energy of the fitted state, Lt is the time extent of the lattice, and t is the time
between the source and sink of the correlation function (to which we fit). A and B are amplitudes,
one for each different smearing (including no smearing) at the source (sc) and the sink (sk).

The use of the HISQ action for our valence quarks means we have an oscillating part in our
vector correlators (accounted for by the second term in the fit function) which allows for access to
axial vector states such as the hc. The fits are all very good, with χ2 < 1 in each.

2.3 Fixing the Lattice Scale

To fix the lattice spacing a we compare the physical value of the Wilson flow parameter w0 =

0.1715(9)fm [7] with its value determined on each ensemble as shown in Table 2.
Statistical errors on our results are mostly dominated by the error on w0/a as used for conver-

sion to physical units. The plots of our results do not include the error on the physical value of w0

since it is correlated between points; it is added later as a systematic error where required.
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Figure 1: The spectrum of charmonium as computed on each of the ensembles listed in Table 2.
Individual determinations of each mass are plotted in order of decreasing lattice spacing from left
to right. The ηc and J/Ψ masses were calculated on all 10 ensembles listed in Table 2, and the χc0

and χc1 masses have only been computed on a single ‘coarse’ ensemble. The η ′c, the Ψ′ and the hc

masses were computed on the three ‘coarse’ as well as two of the ‘fine’ ensembles.

3. Results

The computed charmonium spectrum can be seen in Figure 1. Our bare lattice charm masses
amc were tuned by fixing to the mass of the ηc, and it can be seen from the plot just how well-tuned
they actually are.

3.1 Spin-Averaged 2S–1S Splitting

A plot of the spin-averaged 2S–1S splitting is shown in Figure 2. These preliminary results
appear to be consistent with the experimental value in the continuum limit, and thus we do not
appear to observe the same discrepancy as in the Fermilab study [3].

3.2 J/Ψ−ηc (Hyperfine) Splitting

We have been able to obtain very accurate results for the hyperfine splitting on ensembles with
4 different lattice spacings, and with 3 different light quark masses in the sea, which are plotted in
Figure 3. Since we have such a wide range of data, we attempt a continuum fit to the form:

p
(

1.0+A1x+A2x2 +A3x3 +A4x4 +A5x5 +χ1δm(1.0+χa2a2)+χ2δ
2
m

)
where the A and χ terms are coefficients to be determined by the fit. p is the physical value of the
hyperfine splitting. The terms in x = (amc)

2 model dependence on discretisation errors, and the
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Figure 2: Preliminary results for the spin-averaged 2S–1S splitting of charmonium as determined
on ‘coarse’ and ‘fine’ lattices. The magenta point at zero lattice spacing represents the experimental
value.

terms in δm model the sea-quark mass dependence (clearly seen on the plot). This dependence is
partly from the use of w0/a to determine the lattice spacing. δm is the mistuning of the sea quark
masses — this is very small on the physical point lattices.

The prior on the physical value is taken as p = 110±20 MeV, and the fit values at the physical
point are shown by the grey band. Our continuum result is

116.2±1.4(stat.)±2.8(sys.) MeV

which is shown on the plot as the magenta band. The width of this band includes statistical errors
as well as the error on the physical value of w0 as mentioned before; however, it is dominated by
the inclusion of a ±2.5 MeV systematic error to account for ηc annihilation effects [5].

This result compares favourably with the current PDG value of 113.2(7) MeV [1], and also
agrees well with our previous calculation on lattices with 2+1 flavours of quarks in the sea [4].

3.3 hc− J/Ψ Splitting

In Figure 4a, we plot preliminary results of the energy difference between the hc and the J/Ψ.
These also appear consistent with the experimental value in the continuum limit, but more data is
needed to make a conclusive statement.

3.4 Ratio of Vector Decay Constants

Determining the decay constants of vector states requires knowledge of a renormalisation fac-
tor Z. However, we can determine ratios of decay constants without requiring this quantity, since
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Figure 3: The hyperfine splitting of charmonium as determined on a range of ensembles from ‘very
coarse’ to ‘superfine’. The grey band indicates the fitted curve at the physical light sea quark mass,
and the magenta band shows our final result in the continuum limit, including both statistical and
systematic errors. Note the range of the y-axis scale.
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Figure 4: Preliminary results for (a) the energy difference between the hc and the J/Ψ, and (b)
the ratio of the decay constants of the J/Ψ and the Ψ′, as determined on ‘coarse’ and ‘fine’ lat-
tices. The magenta points at zero lattice spacing represent the values derived from experimental
measurements.
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the Z-factor cancels upon taking the ratio. Preliminary results for the ratio of the decay constants of
the J/Ψ and the Ψ′ are plotted in Figure 4b, and appear to be consistent with the experimental value
in the continuum limit. It is clear that there are significant discretisation effects in this quantity.

4. Outlook

We have successfully determined the energies of multiple low-lying states in the charmonium
system through the use of smeared source and sink operators with HISQ quarks in lattice QCD.
More data is needed to finalise continuum and chiral extrapolations for the spectrum, so an exten-
sion of these methods to superfine lattices is underway.

Methods of obtaining the renormalisation constant Z for the vector states are also under devel-
opment. This will allow us to obtain individual values for the J/Ψ and Ψ′ decay constants, rather
than the ratio reported above.

A key conclusion is that we find a 2S–1S splitting consistent with experiment.
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