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We study the low-energy scattering of DD̄∗ using lattice QCD with N f = 2 twisted mass fermion
configurations with three pion mass values. The threshold scattering parameters, namely the
scattering length a0 and effective range r0, for the s-wave scattering in JP = 1+ channel are
extracted. Our results indicate that the interaction of this channel is weakly repulsive. Therefore
our results do not support the DD̄∗ bound state interpretation of the state Zc(3900). To further
investigate the properties of Zc(3900), we redo the calculation with some improvements. We
employ the stochastic LapH smearing method, which greatly improves the precision of our results.
We also enlarge the operator basis and study the coupled channel effects.
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1. Introduction

Recently a charged resonance-like structure Z±c (3900) has been observed at BESIII in the
π±J/ψ invariant mass spectrum from the Y (4260) decays [1]. The same structure was confirmed
shortly by the Belle [2] and CLEO collaborations [3]. The mass of this structure is close to the DD∗

threshold. One possible interpretation is a molecular bound state formed by the D̄∗ and D mesons.
Studying the interaction between D̄∗ and D mesons is important to investigate the properties of
Z±c (3900).

This proceedings is organized as follows. In Sec. 2 we briefly describe some computational
strategies. In Sec. 3 we present the simulation details and the results. More details about this work
can be found in Ref. [4]. We started a new study to address some unsolved issues in Ref. [4]. The
methodology and very preliminary results of this new study are presented in Sec. 4.

2. Strategies for the computation

2.1 Twisted boundary condition

Under the ordinary periodic boundary condition, the three-momentum is quantized as k = 2π

L n
with n being a vector of integers. For a typical lattice size the smallest nonzero momentum is still
too large to study low-energy scattering. In order to increase the resolution in momentum space,
we have adopted the so-called twisted boundary conditions (TBC) [5, 6] for the valence quark
fields. The strategy follows that in Ref. [7]. Basically, the quark field ψθ (x, t), when transported
by an amount of L along the spatial direction i (designated by unit vector ei), i = 1,2,3, will change
a phase eiθi :

ψθ (x+Lei, t) = eiθiψθ (x, t) , (2.1)

where θ = (θ1,θ2,θ3) is the twisted angle (vector) for the quark field in spatial directions.
Introduce the new quark fieldsψ ′(x, t) = e−iθ ·x/Lψθ (x, t), it is easy to verify that ψ ′(x, t)

satisfy the conventional periodic boundary conditions if the un-primed field ψθ (x, t) satisfies the
twisted boundary conditions (2.1). For Wilson-type fermions, this transformation is equivalent to
the replacement of the gauge link: Uµ(x)⇒ U ′µ(x) = eiθµ a/LUµ(x) , for µ = 0,1,2,3 and θµ =
(0,θ).

Normal hadronic operators are constructed using the primed fields. For example, a quark
bilinear operator OΓ(x, t) = ψ̄ ′f Γψ ′f ′(x, t), after summing over the spatial index x, will carry a non-
vanishing momenta: p = (θ f − θ f ′)/L. The allowed momenta on the lattice are thus modified
to:

k =
2π

L

(
n+

θ

2π

)
. (2.2)

In principle, we can have any value of momentum on lattice by the variation of the twist angle. Note
that, For a generic value of the twist angle θ , the parity is broken. Parity is a good symmetry only
for special values θi = 0 or π . In this work we apply four different twist angles θ = (0,0,π/8), θ =
(0,0,π/4), θ = (0,0,π) and θ = (π,π,0). Parity breaking at θ = (0,0,π/8) and θ = (0,0,π/4)
has to be taken into account when extracting the scattering information.
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2.2 Lüscher’s finite volume method

We use Lüscher’s finite volume method to extract the scattering parameters. Lüscher has
shown that the energy eigenvalue of a two-particle system in a finite box is related to the elastic
scattering phase of the two particles in the infinite volume [8, 9]. In the center of mass frame, we
write the energy of the two-particle system E1,2 as

E1,2 =
√

m2
1 +k2 +

√
m2

2 +k2 . (2.3)

It is convenient to define a variable q2 = k2L2/(2π)2 . What Lüscher’s formula tells us is a direct
relation of q2 and the elastic scattering phase shift δ (q) in the infinite volume. In the simplest case
of s-wave elastic scattering, it reads [9] :

qcotδ0(q) =
1

π3/2 Z00(1;q2) , (2.4)

where Z00(1;q2) is the zeta-function which can be evaluated numerically with given q2 value.
Once the two-particle energy E1,2 is obtained from lattice simulations, one can infer the elastic
energy shift by applying Lüscher’s formula given above.

In the case of parity breaking, if we ignore higher partial waves and consider the s-wave and
p-wave, Lüscher’s formula becomes

[qcotδ0(q2)−m00][q3 cotδ1(q2)−m11] = m2
01 , (2.5)

where m00, m11 and m01 are known functions of q2.

3. Simulation details and Results

In this study, we have utilized N f = 2 twisted mass gauge field configurations generated by
European Twisted Mass Collaboration (ETMC) at β = 4.05 for three different pion mass values
300 MeV, 420 MeV and 485 MeV. All lattices used are of the size 323× 64 with lattice spacing
a' 0.067fm. For the valence charm quark, we have used the Osterwalder-Seiler action [10].

3.1 Extraction of two-particle energy levels

Two-particle energies are measured in Monte Carlo simulations by measuring corresponding
correlation functions, which are constructed from appropriate interpolating operators with definite
symmetries. Since Z±c (3900) was observed in J/ψπ± final states, the preferable quantum numbers
of this state are IG(JP) = 1+(1+). Expressing in terms of particle contents explicitly, the operator
should be D∗+D̄0 + D̄∗0D+.

On the lattice, the rotational symmetry group SO(3) is broken down to the corresponding point
group. The two-particle system with JP = 1+ transforms according to T1 irreducible representation
of the cubic group. Thus, we use the following operator to create the two charmed meson state
from the vacuum,

O i
α(t) = ∑

R∈G

[
D∗+(R◦kα , t +1)D̄0(−R◦kα , t)+ D̄∗0(R◦kα , t +1)D+(−R◦kα , t)

]
, (3.1)
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θ Irrep ∆E[tmin, tmax](µ = 0.003) ∆E[tmin, tmax](µ = 0.006) ∆E[tmin, tmax](µ = 0.008)
0 T1 0.001(1)[8,13] 0.054(2)[7,11] -0.000(1)[10,14] 0.059(2)[7,11] 0.005(2)[13,17] 0.046(1)[7,11]

(0,0, π

8 )
A1 -0.006(2)[9,16] 0.046(5)[10,15] -0.005(2)[11,16] 0.051(2)[9,14] 0.005(4)[17,23] 0.056(4)[12,18]
E 0.005(2)[10,15] 0.061(2)[6,11] 0.016(5)[18,23] 0.064(2)[9,14] -0.002(1)[4,10] 0.061(4)[14,20]

(0,0, π

4 )
A1 -0.005(2)[9,13] 0.051(5)[10,14] -0.004(2)[11,16] 0.052(2)[9,14] 0.006(2)[13,20] 0.056(4)[12,18]
E 0.005(2)[10,15] 0.061(2)[7,11] 0.022(8)[20,25] 0.065(2)[9,14] -0.001(1)[4,12] 0.065(5)[14,20]

(0,0,π)
A2 -0.015(5)[14,19] 0.014(7)[19,24] 0.021(5)[18,24]
E -0.003(10)[17,25] 0.043(9)[20,27] 0.028(6)[19,26]

(π,π,0)
B1 0.003(10)[17,22] 0.026(6)[18,26] 0.059(8)[19,26]
B2 0.025(5)[12,17] 0.031(1)[6,12] 0.026(5)[16,22]
B3 0.029(1)[5,10] 0.020(4)[14,21] 0.029(1)[6,12]

Table 1: Results for the energy shifts ∆E obtained in our calculations for various cases. The time interval
[tmin, tmax] from which we extract the values of ∆E are also listed. These ranges are relevant for the estimation
of the error for the zeta functions as described in the text.

where kα is a chosen three-momentum mode. In this study we applied three different modes
corresponding to k2

α = 0, (2π

L )2, and 2(2π

L )2 respectively. G = O(Z) designates the cubic group and
R ∈ G is an element of the group. We have used the notation R ◦kα to represent the momentum
obtained from kα by applying the operation R on kα . To avoid complicated Fierz rearrangement
terms, we have put the two mesons on two neighboring time-slices.The single particle operators
for the pseudoscalar and vector charmed mesons are local quark bilinears.

In the case of twisted boundary conditions, the operators are constructed similarly with the
primed fields for the up/down quark fields. The only difference is the discrete version of the rota-
tional symmetry. It has been reduced from Oh to one of its subgroups: D4h, D2h or C4v, depending
on the particular choice of θ . For more details, see Ref. [4].

To obtain the two-particle energies, we need to calculate the correlation matrix Cαβ = 〈Oα(t)O†
β
(0)〉

and solve the generalized eigenvalue problem:

C(t) · vα(t, t0) = λα(t, t0)C(t0) · vα(t, t0) . (3.2)

The eigenvalues λα(t, t0) can be shown to behave like [11] λα(t, t0)' e−Eα (t−t0) + · · · , where Eα is
the eigenvalue of the Hamiltonian.

The real signal for the eigenvalues in our simulation turns out to be somewhat noisy. To
enhance the signal, the following ratio was attempted:

Rα(t, t0) =
λα(t, t0)

CV (t− t0,0)CP(t− t0,0)
∝ e−∆Eα ·(t−t0) , (3.3)

where CV (t−t0,0) and CP(t−t0,0) are one-particle correlation functions with zero momentum for
the corresponding mesons. Therefore, ∆Eα is the difference of the two-particle energy measured
from the threshold of the two mesons. The energy difference ∆Eα can be extracted by fitting
Rα(t, t0) to an exponential. The final results for ∆Eα , together with the corresponding ranges from
which the ∆Eα ’s are obtained, are summarized in Table 1. We only list the lowest two energy levels
since we are not going to use those higher energy levels to extract the scattering parameters.

3.2 Extraction of scattering information

Close to the scattering threshold, the quantity qcotδ (q2) has the following effective range
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B0 R0 B1 R1 χ2/do f
µ = 0.003 -0.513(0.008) -2.3(0.1) -0.047(0.006) -0.1(0.2) 47.0/11
µ = 0.006 -0.16(0.01) -0.8(0.2) 0.29(0.05) -2.6(0.3) 28.1/ 11
µ = 0.008 -0.67(0.09) 2.4(0.8) -0.037(0.008) -0.1(0.2) 17.0/11

Table 2: Fit results with parity-conserving and parity-mixing points.

expansion:

q2l+1 cotδl(q2) = Bl +
1
2

Rlq2 + · · · , (3.4)

where Bl and Rl are related to the scattering length al and the effective range rl by Bl = [L/(2π)]2l+1a−1
l

and Rl = [L/(2π)]2l−1rl .
Using Eq. (2.4), (2.5) and (3.4), we fit our parity-conserving and parity-mixing data simulta-

neously to get the s-wave and p-wave scattering parameters. The fitting results for three different
pion masses are collected in Table 2. To get a feeling of the quality of the fits, we plot the quantity
qcotδ0(q2) vs. q2 in Fig. 1. This figure illustrates the situation for all three pion masses in our
simulation.

It is straightforward to convert the fitted values of B0, R0, B1 and R1 into physical units. The
s-wave scattering length and effective range are summarized in Table. 3. It is observed that the
values we get for a0 do not seem to follow a simple regular chiral extrapolation within the range
that we have studied. We therefore kept the individual values for a0 and r0 for each case. This
irregularity might be caused by the smallness of the value mπL∼ 3.3 for µ = 0.003. To circumvent
this, one has to study a larger lattice. The negative values of a0 indicate that the two constituent
mesons have weak repulsive interactions at low energies. Therefore, our result does not support the
bound state scenario for these two mesons. This conclusion is consistent with a recent lattice study
using Wilson fermions [12].
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Figure 1: Results for the correlated fits as described in the text. Each panel, from left to right, corresponds
to µ = 0.003,0.006 and 0.008, respectively. The quantity qcotδ0(q2) is plotted versus q2 for all our data
points, both parity-conserving (blue) case and parity-mixing case (green). The straight lines and the bands
indicate the fitted result for F0(q2) = B0 +(R0/2)q2 and the corresponding uncertainties in B0 and R0.

4. A new study

In the previous section we concluded that our results do not support the DD̄∗ bound state
interpretation for Zc(3900). However, we are not able to rule out the possible appearance of a bound
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µ = 0.003 µ = 0.006 µ = 0.008
a0[fm] -0.67(1) -2.1(1) -0.51(7)
r0[fm] -0.78(3) -0.27(7) 0.82(27)

Table 3: The values for a0 and r0 in physical units.

state if the pion mass is lowered and the volume is increased accordingly. We only considered the
DD̄∗ ( and its conjugation under G-parity) interpolating operators. In principle, these operators have
overlap with J/Ψπ , ηcρ and D∗D̄∗ states. A more complete set of operators and a coupled-channel
study is required. Ideally the operator basis should include all possible two-meson operators and
diquark-antidiquark operators with the same quantum numbers in the targeted energy range. We
started a new study in order to address these issues.

We use N f = 2 + 1 + 1 twisted mass gauge field configurations generated by ETMC. Con-
figurations with various pion masses, volumes and lattice spacings are available for this study.
The details about the configurations can be found in Ref. [13]. The action for valence quarks is
Osterwalder-Seiler action [10]. Stochastic Laplacian Heavyside quark smearing method [14] is
applied for the computation of the quark propagators. With this method we can have all-to-all
propagators and it is efficient to compute the correlation functions of a large basis of operators.

As a start point, we calculated the spectrum using five operators which feature the two-meson
systems with particle contents DD̄∗, J/Ψπ , ηcρ and D∗D̄∗. The operators are built in a similar way
as in Eq. 3.1. For DD̄∗, ηcρ and D∗D̄∗ we only used the zero momentum mode. For J/Ψπ we used
two momentum modes. Five energy levels are obtained from the variational method as described
in Sec. 3.1. The effective masses are shown in Fig. 2(a). The effective mass plots of the energy
shift for DD̄∗ and D∗D̄∗ are also shown Fig. 2(b) and 2(c) respectively. From the plots we can see
that the interactions in these two channels are very weak. The analysis to extract the scattering
parameters using coupled-channel Lüscher’s fomula is undergoing. We are also going to include
more operators, such as the diquark-antidiquark operators and the non-local operators.

D* D*D* D*

DD*DD*

Ηc ΡΗc Ρ

J�Y Π Hk = 1LJ�Y Π Hk = 1L
J�Y Π Hk = 0LJ�Y Π Hk = 0L
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Figure 2: Effective mass plots for the five energy levels obtained from the five interpolating operators
described in the text (a), the energy shift of DD̄∗ (b) and the energy shift of D∗D̄∗ (c).

5. Conclusions

In this proceedings, we present an exploratory lattice study for the low-energy scattering of
(DD̄∗)± two meson system near the threshold using single-channel Lüscher’s finite-size technique.
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We obtained the s-wave scattering length a0 and effective range r0 in the JP = 1+ channel. Our
results indicate that the interaction in this channel is weakly repulsive.

We started a new study in the effort of investigating the lattice artifacts and coupled channel
effects. We present some very preliminary results from this study. More results will be available in
the near future and provide more solid information about the properties of the charged charmonium-
like state Zc(3900).
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