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The anomalous magnetic moment of muon, g−2, is a very precisely measured quantity. However,
the current measurement disgrees with standard model by about 3 standard deviations. Hadronic
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1. Introduction

The anomalous magnetic moment of muon defined in terms of the photon-muon vertex func-
tion.

ū(p′)Γµ(p′, p)u(p) = ū(p′)
[

F1(q2)γµ + i
F2(q2)

4m
[γµ ,γν ]qν

]
u(p) (1.1)

Here F2(0) = (g− 2)/2. The value has been measured very precisely by BNL E821 [1]. It can
also be calculated theoretically to great precision as well [3]. The 3 standard deviations between
the experiment and theory makes this value very interesty. The value from a much more accurate
experiment Fermilab E989 is expected in few years.

We will focus on the lattice calculation of connected hadronic light by light amplitude, which
is the second largest theoretical uncertainty contributor and the only current available estimate is
by model [6]. This subject was begun by T. Blum, M. Hayakawa, T. Izubuchi more than 5 years
ago [5][2]. Below are the Feynman diagrams for this process.

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ

Figure 1: Light by Light diagrams. There are 4 other possible permutations.

To calculate this process, we need to include QED in lattice simulations. We will start with a
simpler diagram which is the major contributor of the muon anomalous magnetic moment.

2. Lattice QED with Schwinger Term as an Example

We would like to do a standard Euclidean-space lattice calculation with a muon source and
sink, well separated in Euclidean time, computing the following amplitude

M 1-loop
µ = (−ie)2

∑
x,x′

S(xsnk,x)γνS(x,xop)γµS(xop,x′)γν ′S(x′,xsrc)Gνν ′(x,x′). (2.1)

Where S(x,y) is the muon propagator and Gµν(x,y) is the photon propagator. For brevity, we
use a local current everywhere in the above formula, but in our actual implementation the muon
interacts with the QED gauge field via the gauge link Uµ(x) = exp(ieAµ(x)), so the internal photon
is coupled to the conserved vector current.

Naively, the sum would require O(Volume2) computation, which is not affordable. We discuss
two strategies:
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• Exact Photon: Fast Fourier Transformation.

• Stochastic Photon: Calculate the sum stochastically.

Both approaches make the problem O(Volume).

xsrc xsnk

xop, µ

x′, ν′ x, ν

xsrc xsnk

xop, µ

An
ν′(x′) An

ν (x)

Figure 2: Schwinger term diagram with (L) exact photon (R) stochastic photon.

2.1 Stochastic Photon

Just as is done for lattice QCD, we can average over gauge configurations which include the
electromagnetic field contribution. For example, the photon propagator can be evaluated approxi-
mately with N stochastic samples:

Gµν(x,y) ≈
1
N

N

∑
n=1

An
µ(x)A

n
ν(y). (2.2)

We use Feynman gauge and a non-compact QED gauge action. This action is relatively simple so
we can generate the properly distributed gauge field directly without using a Markov process. For
brevity, we ignore the complexities caused by finite lattice spacing in the following formula:

An
µ(x) =

1√
V

√
2Re∑

k

εn
µ(k)√
|k2|

eik·x, (2.3)

where the εn
µ(k) are random variables, which obey

1
N

N

∑
n=0

ε
n
µ(k)ε

n∗
ν (k′) ≈ δµνδkk′ . (2.4)

If we substitute the factorized approximate photon propagator expression into the original Schwinger
term amplitude, we find

M 1-loop
µ ≈ (−ie)2 1

N

N

∑
n=1

(2.5)

·
[
∑
x

S(xsnk,x)γνAn
ν(x)S(x,xop)

]
γµ

[
∑
x′

S(xop,x)γν ′An
ν ′(x

′)S(x′,xsrc)

]
.

The sum over x,x′ can be then performed separately thus reducing the complexity to O(Volume).
This approach is very general, and can be applied anywhere. However, this method can be very
costly. It generally takes several thousands of samples to reduce the stochastic error to the percent
level.
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2.2 Exact Photon

The photon propagator in momentum space is also a factorized formula.

Gµν(x,y) =
1
V ∑

k

δµν

k2 eik·(x−y) (2.6)

We then rearrange the original formula so that the sum over x,x′ can be performed separately.

M 1-loop
µ = (−ie)2 1

V ∑
k

δνν ′

k2

·
[
∑
x

S(xsnk,x)γνeik·xS(x,xop)

]
γµ

[
∑
x′

S(xop,x′)γν ′e−ik·x′S(x′,xsrc)

]
(2.7)

The expressions in brackets can be calculated with fast Fourier transformation. This method is
very efficient and is completely free of stochastic noise. However, sometimes this method cannot
be applied and we need to switch back to the stochastic photon method.

For the Schwinger term problem, this method fits perfectly. We use this method to study the
finite volume and discretization errors, which could give us some insight into the light by light
calculation.

2.3 Finite Volume Effects and Discretization Errors

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

F
2
(q

2
)/
(
α 2
π
)

1/L (MeV)

Infinite volume q = 2π/L
Finite volume q = 2π/L

Lattice a−1 = 264MeV
Lattice a−1 = 352MeV
Lattice a−1 = 528MeV

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

F
2
(q

2
)/
(
α 2
π
)

a2 (GeV−2)

Analytic 1/L = 16.5MeV q = 2π/L
Lattice

Figure 3: Lattice sizes are 163×64, 243×96, 323×128, 483×192 with Ls = 8 and tsnk− top = top− tsrc =

T/4. The dashed line represents the analytic result in finite volume with momentum transfer q = 2π/L. The
muon mass mµ = 105MeV is used to set the lattice spacing a. (L) The solid line represents the analytic result
in infinite volume but the same non-zero momentum transfer. (R) The line shows the 2nd order polynomial
obtained by fitting the lattice results. An a4 term is visible.

In order to compare with lattice simulation results, we also calculated the Schwinger term in fi-
nite volume and non-zero momentum transfer in the continuum limit. We calculated this “analytic”
result using the analytic form of the muon propagator and doing the momentum sum numerically
without a lattice cutoff. The leading term of the 1/L expansion of our results agree with the NRQED
calculation in [4].
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3. Connected Light by Light Evaluation Strategy

There are three photons connected to the quark loop, the exact photon method cannot be
applied to all of them. However, we can still treat one photon to be exact, as shown in Figure 4.
Again, we use the local current everywhere in the formula below, but in our actual implementation
the internal photons are coupled to the conserved vector current.1

xsrc xsnk

Bm2

σ′ (y′)

z′, ν′

Am1

ρ′ (x′)

xop, µ

z, ν

Bm2
σ (y) Am1

ρ (x)

xsrc xsnk

Bm2

σ′ (y′)A
m1

ρ′ (x′)

z′, ν′

xop, µ

z, ν

Bm2
σ (y) Am1

ρ (x)

Figure 4: Light by Light diagrams calculated with one exact photon and two stochastic photon. There are 4
other possible permutations.

M LbL
µ = −(−ie)6

∑
x,y,z

tr[γµSq(xop,x)γρSq(x,z)γνSq(z,y)γσ Sq(y,xop)]

· ∑
x′,y′,z′

[
1
M

M

∑
m1=1

Am1
ρ (x)Am1

ρ ′ (x
′)

][
1
M

M

∑
m2=1

Bm2
σ (y)Bm2

σ ′ (y
′)

][
1
V ∑

k

δνν ′

k2 eik·(z−z′)

]
· [S(xsnk,x′)γρ ′S(x′,z′)γν ′S(z′,y′)γσ ′S(y′,xsrc)

+S(xsnk,z′)γν ′S(z′,x′)γρ ′S(x′,y′)γσ ′S(y′,xsrc)

+other 4 permutations] (3.1)

= −(−ie)6 1
M2

M

∑
m1,m2=1

1
V ∑

k

δνν ′

k2

· ∑
z

tr

{
γµ

[
∑
x

Sq(xop,x)γρAm1
ρ (x)Sq(x,z)

]
γνeik·z

[
∑
y

Sq(z,y)γσ Bm2
σ (y)Sq(y,xop)

]}

· ∑
z′

{ [
∑
x′

S(xsnk,x′)γρ ′A
m1
ρ ′ (x

′)S(x′,z′)

]
γν ′e−ik·z′

[
∑
y′

S(z′,y′)γσ ′B
m2
σ ′ (y

′)S(y′,xsrc)

]

+S(xsnk,z′)γν ′e−ik·z′
[
∑
x′

S(z′,x′)γρ ′A
m1
ρ ′ (x

′)

(
∑
y′

S(x′,y′)γσ ′B
m2
σ ′ (y

′)S(y′,xsrc)

)]

+other 4 permutations

}
(3.2)

1We ignored the multiple photon single link interactions in the lattice simulations presented here so the current is
not completely conserved, and the answer not correct. However, these contributions turned out to be very small when
we added them.
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Note that the sum over x,y can be independent. This means we can do the sum independently with
sequential source method. Also, because of this independence, we can store the results in memory
and reuse them for different combination of m1,m2. Thus, the number of inversion associated with
the fermion loop is only proportion to M, but the number of samples grows as M2. We call this the
A−B method because seperate A and B stochastic variables are being used for the stochastic left
and right of the exact photon.

In above formula, we use a point source at all external positions xsrc,xsnk,xop to make the
formula more clear. In our simulation code, we use wall sources with half lattice momentum at xsrc

and xsnk. We use random wall source at xop to implement the fermion loop. We use S to denote the
number of random wall sources.

4. QED Light by Light Simulations

As a test, we replace the quark loop by a muon loop. The QED LbL results are in Figure 5.
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Figure 5: The simulations were done in finite volume with momentum transfer q = 2π/L. The muon mass
mµ = 105MeV is used to set the lattice spacing a. (L) Finite volume effect on F2: Lattice sizes are 163×64,
83×32 with Ls = 8 and tsep/2 = tsnk− top = top− tsrc = T/4. (R) Excited states effect on F2: Lattice size is
163×64 with Ls = 8.

5. Conclusions

We have investigated some different choices allowed in this computational approach. The
results are summarized in the Table 1. We find that there are three major factors that affect the
results.

Averaging over different combinations of the A, B stochastic electromagnetic field reduces the
statistical errors, limited only by the memory of the machine. The amount of work is proportion to
M but the amount of statistics is roughly proportion to M2 as is indicated by the equal variance in
the first and second rows in Table 1.

The random wall source at the location of the external current works very well for large lattices.
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We use anti-periodic boundary condition in z direction for the muon propagator and set the
momenta of initial and final muon to be ±π/L. Using these symmetric kinematics significantly
reduces the statistical error as both the initial and the final state are the lowest energy state possible,
so the noise to signal ratio does not increase exponentially as thetime separation between muon
source and sink grows. Note that this is different from a pion initial/final state, in which case
anti-periodic boundary will not help us much since the noise will always decay with the rate of a
stationary pion.

Lattice Size tsep mµa Result±Err
(α/π)3 N×S×M2 confs

√
Var

(α/π)3

163×64 32 0.2 0.2228±0.0046 548×18×122 5.5
163×64 32 0.2 0.1962±0.0368 1024×18×12 5.0

163×64 (point src) 32 0.2 0.232±0.033 1508×12×62 28.4
163×64 32 0.1 0.1666±0.0069 88×18×122 3.3

163×64 (p1 = 0) 32 0.1 0.2278±0.0265 285×36×242 64.4

Table 1: M stands for the number of stochastic A or B fields, S stands for the number of random wall sources
that we use to calculate the external current. The calculation is repeated N times.

√
Var=Err×

√
N×S×M2

stands for the projected variance deduced from to the statistical uncertainty of the averaged result and the
total number of samples.
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