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1. Introduction

Recently, the form factors of unstable states have beerestumlattice QCD by several col-
laborations. For example, tENy* form factors were calculated, see Ref. [1]. The electromag-
netic, axial and pseudoscalar form factors ofAkeesonance have been also studied [2]. We would
like to also mention the investigation of the electromaignietrm factor of thep-meson [3]. Last
but not least, a pioneering attempt is made to address thelatbn of the electromagnetic form
factors of the\(1405-resonance which, for many reasons, represents a greatéargye than the
cases listed above [4]. It should be however noted that thkectyes that one encounters in these
calculations are not purely technical ones related to tmellsitions. The presence of the unstable
states represents a conceptual challenge as well, sinbestates do not belong to the set of the
eigenstates of the QCD Hamiltonian. Consequently, matements of the currents, which define
the resonance form factors, ought to be properly definedeictimtinuum as well as on the lattice.

In short, the following conceptual issues should be adddessthe calculations:

1. Since the resonances do not belong to the Fock space oftBeHamiltonian, the resonance
matrix elements can not be defined in a standard manner ewfe tontinuum QFT. One
has to consider a consistent definition of this quantity imteof the Green functions and
establish its connection to the experimentally measuredtifies.

2. Even given a consistent definition of this quantity in tbattmuum, it remains to be shown,
how it can be calculated from the Euclidean Green functiare finite volume that are ob-
tained from simulations in lattice QCD. Performing an irteavolume limit here is a highly
non-trivial enterprise and can not be done merely by bruteefo

Of course, such problems do not emerge, if simulations amedaout for large quark masses,
when the pertinent resonances do not decay. However, $iac@mulations with the quark masses
close to the physical are starting to emerge, this problemdsieo be urgently clarified.

Recently, in a series of papers [5, 6], we have addressegriiidem in the framework of the
non-relativistic EFT in a finite volume (for the alternatispproaches, see, e.g., Refs. [7, 8, 9]).
The present work is mainly based on the material contain&ei[6], where the extraction of the
ANy* transition form factors from the lattice data is considered

2. Resonance form factors in the infinite volume

As it is well known, a resonance state in QFT is not contaimetié basis vectors of the Fock
space. Such a state emerges as a pole irstmatrix elements on the unphysical sheets in the
complex energy plane. The real and imaginary parts of the position, by definition, are the
energy and the half-width of a resonance. With this definjttbe parameters of a given resonance
are universal (process-independent), i.e Satlatrix elements for different processes, after analytic
continuation, have a pole exactly at the same place. Furtheresonance matrix elements are
defined through the residues of the pertinent Green furgtimontinued to the resonance pole. The
guantities defined in this way are unique, i.e., do not depenal particular process chosen for the
extraction.



TheANy* transition form factors on the lattice Akaki Rusetsky

Aﬂ

N

Figure 1: Twisting a single quark in the nucleon.

Historically, however, the resonance position has ofteenkidentified with the bump in the
amplitude, where the phase shift passes throogh. In the context of the present problem,
the ANy* form factors have been algebraically related to the hgliaihplitudess in the pion
photo(electro)production at the (real) resonance enengydatermined from the experiment (see,
e.g., Refs. [10, 11]). Such a procedure has an obvious ayamtf operating only with the ex-
perimentally observable amplitudes at real energies. Weuwvéhe form factors, obtained with the
use of this method, contain contributions from the backgdoprocesses, which are different in
different reactions. Note also that recently the extractib the residues of the photoproduction
amplitude at the complex pole positions correspondingeadadifierent baryon resonances has been
carried out from the experimental data [12]. Theoreticdilgth methods should give identical
results in the limit of an infinitely narrow resonance. Theules of Ref. [12] however indicate
that, for some resonances, the effect of analytic contionatould be sizable. To summarize, the
method based on the analytic continuation is the only thigaty sound method that gives the
value of a resonance matrix element in QFT devoid of an if anthgbe. The lattice simulations
must be able to predict the value of this quantity, and thedimur investigation is to formulate
this procedure in detail. In addition, in order to have a fmkty to compare with the data ob-
tained without the use of the analytic continuation, we falate the method of determining the
photo(electro)production amplitudes from the latticeadat

It could be argued, that our method is a generalization ofLilexcher-Lellouch method [7]
for the calculation of the resonance matrix elements. Whikbat paper a resonance decays only
weakly, here we consider the resonances with a non-zerongstiidth (e.g., thed), so that the
analytic continuation to the resonance pole is inevitable.

3. Lattice calculations: the kinematics

The matrix element, describing tlNy* vertex, depends on two momenta. In the CM frame
pp = 0, itis convenient to choose two independent variablestdta¢ energy of théNy* systemE
and the magnitude of the three-momentum of the nuc]@jnAll other kinematical variables can
be expressed in terms of these two quantities.

Since theA is a resonance, one has to perform a lattice measuremerffesedi values of
E in the vicinity of the resonance energy, and then extrapdia¢ result of the measurement of
the matrix element to the complex pole position. In ordergbaymeaningful procedure, another
kinematical variable, namel|, should be fixed. This can be achieved in different ways:

e ChooseQ in the CM frame along the third axis, and consider asymmétoikes, where the
side length along the third axis is different from other twary the side length only in the
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first two directions.

e Carry out the calculation of the matrix element at differariimes, but using twisted bound-
ary condition for the quark propagator in the nucleon whechttached to the external photon
(see Fig. 1). One may adjust the twisting an@lso that the momentur® stays fixed as
the box size varies. It is important that the pertinent valti® can be determined from
kinematics alone, prior to any simulations.

In practice, a combination of these two strategies can leeagiplied. Note also that fixing)|
is equivalent to fixing the Lorentz-invariant varialtlle- Q2 since, for a fixecE in the CM frame,
the energy of the photo@o = E — (Mg, + Q%2 is also fixed (hereqy denotes the nucleon mass).
Further, theANy* matrix elements are described by the three Lorentz-irvaf@m factors
Gm(t), Ge(t), Ge(t). In order to project out these, we construct the local opesahat correspond
to a definite spin projection of the nucleon and fhen the third axis. Let/#(x) andy(x) denote

the A and the nucleon interpolating fields, respectively, afk) is the electromagnetic current.
Let us introduce the following operators:

O3)5(t) Z 5 1+zg)%(1+ y4)\if2(ﬁl(x,t)—izgﬁz(x,t)),
O1)2(t) 22 (-39 (1+ y4)\if2(ﬁl(x,t)+izgﬁ2(x,t)),
O1/(t) Z% 1+23% (1+ya) 03 (x,1)
P20 = 3 @ Foxt) 5 (1E5)5 (1410,
JE(0) = %(Jl(O)iiJZ(O)), (3.1)

whereXs = diag(os, 03). Consider now the following three-point functions:
Rya(t',t) = <O|51/2(t/)~]3(0)w52(t)|0>,

Ryja(t',t) = (0]012(t) 3T (0) % ~12(110),

Roja(t',t) = (0]63/2(t)3" (0)F2,(1)]0). (3.2)
and define
By2(t) = Tr(0]6/2()61,2(0)[0),
Dyj2(t) = Tr(01/2(t)51/2(0)]0).
Daa(t) = Tr(0073/2(t)F3/2(0)]0).
D& (t) = Tr(oy, ,)F2 ,(0)[0). (3.3)
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It can be seen that, in the lintit— +o0, t — —o0,

Tr(Ry/2(t',1)) (Da(t/)f)l/Z(_t)f)l/Z(t/_t)
Daja(t' —t) \ Dyjo(t')DG(—t)D(t —t)
_JVTV(Rl/z(tlvt)) (DQ(t/)Dl/Z(_t)Dl/Z(t/_t)
Dyjo(t' —t) \ Dy2(t')Dg(—t)Dg(t' —1)

Tr(Rso(t',1)) (DS(t/)D3/2(—t)D3/2(t'—t
Dajo(t'—t) \ D3pa(t')DG(~t)D4 (' ~1)

1/2
) L (1/258%0)1/2),

1/2
) (172370~ 1/2).

1/2
)) L 323N 02, (34)

wheret” = (4E,/mg + Q2)%2, Note that the above relations can be straightforwardegaized
to include the excited states with the quantum numbers of\th#&/e are interested in those states
which, at a given volume, have the energies close tdtheass.

The right-hand side of the above equations denotes thexheddrinents that are directly mea-
sured on the lattice. The spin projection of the nucleon&od the third axis is explicitly shown.
We further use a shorthand notatién i = 1,2,3 for these matrix elements. As already men-
tioned, thel are measured in a finite volume. In case of an unstaptle infinite volume limit in
these matrix elements can not be performed straightfotwa@ur main aim is to show, how the
measuredr can be related to the form factors in the infinite volume.

4. Extraction of the form factors

The extraction of the form factors is described in Ref. [6fene further details can be found.
In order to set up a framework for the extraction, the noatiéktic EFT in a finite volume is used.
The essence of the method is to carry out calculations tvaakeulate the quantitiels in a finite
volume and the form factors in the infinite volume. Since iesth calculations the same effective
Lagrangian is used, these two quantities are related. Regandi this relation, we ensure that it
does not depend on the explicit form of the Lagrangian whHicts fplays only an auxiliary role in
the derivation and disappears from the final results.

Our findings can be summarized as follows:

1. In order to calculate th&Ny* transition form factors, first evaluate the finite-volumetrixa
elementds = K (E, |Q|) on the lattice for a fixed® and different values dE.

2. The multipoles for the pion photoproduction at a giverrgn€& are obtained by multiplying
the quantitieds by the well-known Lischer-Lellouch factor:

2 -1/2
A(p,|Q|) = é’5<p>v1/2< P > F(p, . 4.1
Here, p is the relative momentum in theN system, corresponding to the total eneEyin

the CM frameV is the volume,d(p) denotes the phase shift in tReg; partial wave (to be
measured in the same simulation)= pL/2m (for asymmetric boxed, is the box size in
directions 1,2) andp(q) is related to the Luscher zeta-function in a standard masménat
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the Luscher equation read$p) + @(q) = nrr, n=0,1,... (here, the mixing to other partial
waves is neglected). The twisting angle, as well as the astrgrparameter of the box are
not explicitly shown. The definition of the multipoles fromeR[10] is used:

k

K|
1 .

Ao = —5(3E1+ + My )(—16mE),

V3 .
A3y = 7(E1+ — My )(—16mE),
wherek is the photon 3-momenturkg is the photon energk? = k? — k3, andM, E, Sdenote

the pertinent magnetic, electric and scalar multipoles.

o jp = —16MEV2—S,, (4.2)

3. The resonance matrix elements, defined at real energeepra@portional to the imaginary
part of the multipoles at the energies, where the phase jshsftes througbr/2. Explicit
expressions can be found in Refs. [6, 10].

4. In order to extract the matrix element at the resonance, pole has to first multiply eadh
by the pertinent Liischer-Lellouch factor

cog 4(p) P
|d&(p)/dp+de(qg)/dp| 21T

and then one should fit the coefficients of the effective-eaegpansion for the matrix ele-
ment on the reap?-axis, |Q| fixed:

_ ~1/2
E(p.|QD =v1/2( ) F(p.|QD 4.3)

p>cotd(p) Fi(p,|Q)) = A(IQ]) + p?Bi(|Q]) +--- - (4.4)

5. Finally, the resonance matrix elements at the pole ardradat by the substitution

FR(Pr, Q) = i PR3 ZR 2(A(IQ]) + PBI(1Q]) +---). (4.5)

wherepr is the complex momentum corresponding to the pole, and

2 33
B p 16mp°E
R <87TE> <wan(2pd(p3cot5(p))/dp+3ip2)> (*.9)

Here,wy, Wy denote the on-shell energies of a nucleon and a pion withhtieetmomentum
p. The quantitiegpr andZg should be evaluated separately from the measured phate shif

P=Pr

6. The form factors are related to the above resonance nehrixents through

. Er—
Fif, = —RERKQ*AGC(tR)

5 - |/ TGt - et

F3F}2 = \EA(GM (tr) + Ge(tr)), (4.7)
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where Eg, k%,tR denote the full energy, the photon energy and the 4-momeittansfer
squared at the pole, and

~ BErtmy

A
2my

ZER(k%— mN) . (48)

5. Conclusions, outlook

Using non-relativistic EFT in a finite volume, we have set dpamework for the extraction of
the ANy* transition form factors from the lattice data. A countetprthe Lischer-Lellouch for-
mula for the pion photoproduction multipoles has been @elivi he form factors at the resonance
pole have been defined.

The above result can be improved in a variety of ways. In @aer, partial-wave mixing
(ignored so far) should be considered, as well as a resornarice moving frame. Further, multi-
channel resonances deserve special attention (for tHedehsrk, see, e.g., Ref. [9]).

References

[1] C. Alexandrou, G. Koutsou, J. W. Negele, Y. Proestos andigapalis, Phys. Rev. B3(2011)
014501 [arXiv:1011.3233 [hep-lat]]; C. Alexandrou, G. Ksou, H. Neff, J. W. Negele, W. Schroers
and A. Tsapalis, Phys. Rev. T¥ (2008) 085012 [arXiv:0710.4621 [hep-lat]].

[2] C. Alexandrou, T. Korzec, G. Koutsou, T. .Leontiou, C.rte, J. W. Negele, V. Pascalutsa and
A. Tsapaliset al,, Phys. Rev. D79 (2009) 014507 [arXiv:0810.3976 [hep-lat]]; C. Alexandrou
E. B. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. SatoAntsapalis, arXiv:1304.4614
[hep-lat].

[3] M. Gurtleret al.[QCDSF Collaboration], PoS LATTICE008(2008) 051.

[4] B.J. Menadue, W. Kamleh, D. B. Leinweber, M. S. Mahbub 8nd. Owen, arXiv:1311.5026
[hep-lat].

[5] D. Hoja, U.-G. Meil3ner and A. Rusetsky, JHEP04(2010) 050 [arXiv:1001.1641 [hep-lat]];
V. Bernard, D. Hoja, U.-G. Meif3ner and A. Rusetsky, JHEX®9(2012) 023 [arXiv:1205.4642
[hep-lat]].

[6] A. Agadjanov, V. Bernard, U.-G. Mei3ner and A. Rusetdkygcl. Phys. B386(2014) 1199
[arXiv:1405.3476 [hep-lat]].

[7] L. Lellouch and M. Luscher, Commun. Math. Ph24.9(2001) 31 [hep-lat/0003023].
[8] M. T. Hansen and S. R. Sharpe, Phys. Re®6%2012) 016007 [arXiv:1204.0826 [hep-lat]].
[9] R. A. Briceno, M. T. Hansen and A. Walker-Loud, arXiv:188965 [hep-lat].

[10] I. G. Aznauryan, V. D. Burkert and T. -S. H. Lee, arXivlIB0997 [nucl-th].

[11] D. Drechsel, O. Hanstein, S. S. Kamalov and L. TiatorcNBhys. A645(1999) 145
[nucl-th/9807001].

[12] R.L.Workman, L. Tiator and A. Sarantsev, Phys. Re@42013) 6, 068201 [arXiv:1304.4029
[nucl-th]].



