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1. Introduction

Recently, the form factors of unstable states have been studied in lattice QCD by several col-
laborations. For example, the∆Nγ∗ form factors were calculated, see Ref. [1]. The electromag-
netic, axial and pseudoscalar form factors of the∆-resonance have been also studied [2]. We would
like to also mention the investigation of the electromagnetic form factor of theρ-meson [3]. Last
but not least, a pioneering attempt is made to address the calculation of the electromagnetic form
factors of theΛ(1405)-resonance which, for many reasons, represents a greater challenge than the
cases listed above [4]. It should be however noted that the challenges that one encounters in these
calculations are not purely technical ones related to the simulations. The presence of the unstable
states represents a conceptual challenge as well, since such states do not belong to the set of the
eigenstates of the QCD Hamiltonian. Consequently, matrix elements of the currents, which define
the resonance form factors, ought to be properly defined in the continuum as well as on the lattice.

In short, the following conceptual issues should be addressed in the calculations:

1. Since the resonances do not belong to the Fock space of the QCD Hamiltonian, the resonance
matrix elements can not be defined in a standard manner even inthe continuum QFT. One
has to consider a consistent definition of this quantity in terms of the Green functions and
establish its connection to the experimentally measured quantities.

2. Even given a consistent definition of this quantity in the continuum, it remains to be shown,
how it can be calculated from the Euclidean Green functions in a finite volume that are ob-
tained from simulations in lattice QCD. Performing an infinite-volume limit here is a highly
non-trivial enterprise and can not be done merely by brute force.

Of course, such problems do not emerge, if simulations are carried out for large quark masses,
when the pertinent resonances do not decay. However, since the simulations with the quark masses
close to the physical are starting to emerge, this problem needs to be urgently clarified.

Recently, in a series of papers [5, 6], we have addressed thisproblem in the framework of the
non-relativistic EFT in a finite volume (for the alternativeapproaches, see, e.g., Refs. [7, 8, 9]).
The present work is mainly based on the material contained inRef. [6], where the extraction of the
∆Nγ∗ transition form factors from the lattice data is considered.

2. Resonance form factors in the infinite volume

As it is well known, a resonance state in QFT is not contained in the basis vectors of the Fock
space. Such a state emerges as a pole in theS-matrix elements on the unphysical sheets in the
complex energy plane. The real and imaginary parts of the pole position, by definition, are the
energy and the half-width of a resonance. With this definition, the parameters of a given resonance
are universal (process-independent), i.e., allS-matrix elements for different processes, after analytic
continuation, have a pole exactly at the same place. Further, the resonance matrix elements are
defined through the residues of the pertinent Green functions, continued to the resonance pole. The
quantities defined in this way are unique, i.e., do not dependon a particular process chosen for the
extraction.
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Figure 1: Twisting a single quark in the nucleon.

Historically, however, the resonance position has often been identified with the bump in the
amplitude, where the phase shift passes throughπ/2. In the context of the present problem,
the ∆Nγ∗ form factors have been algebraically related to the helicity amplitudesAi in the pion
photo(electro)production at the (real) resonance energy and determined from the experiment (see,
e.g., Refs. [10, 11]). Such a procedure has an obvious advantage of operating only with the ex-
perimentally observable amplitudes at real energies. However, the form factors, obtained with the
use of this method, contain contributions from the background processes, which are different in
different reactions. Note also that recently the extraction of the residues of the photoproduction
amplitude at the complex pole positions corresponding to the different baryon resonances has been
carried out from the experimental data [12]. Theoretically, both methods should give identical
results in the limit of an infinitely narrow resonance. The results of Ref. [12] however indicate
that, for some resonances, the effect of analytic continuation could be sizable. To summarize, the
method based on the analytic continuation is the only theoretically sound method that gives the
value of a resonance matrix element in QFT devoid of an if and amaybe. The lattice simulations
must be able to predict the value of this quantity, and the aimof our investigation is to formulate
this procedure in detail. In addition, in order to have a possibility to compare with the data ob-
tained without the use of the analytic continuation, we formulate the method of determining the
photo(electro)production amplitudes from the lattice data.

It could be argued, that our method is a generalization of theLüscher-Lellouch method [7]
for the calculation of the resonance matrix elements. Whilein that paper a resonance decays only
weakly, here we consider the resonances with a non-zero strong width (e.g., the∆), so that the
analytic continuation to the resonance pole is inevitable.

3. Lattice calculations: the kinematics

The matrix element, describing the∆Nγ∗ vertex, depends on two momenta. In the CM frame
p∆ = 0, it is convenient to choose two independent variables: thetotal energy of theNγ∗ systemE
and the magnitude of the three-momentum of the nucleon|Q|. All other kinematical variables can
be expressed in terms of these two quantities.

Since the∆ is a resonance, one has to perform a lattice measurement at different values of
E in the vicinity of the resonance energy, and then extrapolate the result of the measurement of
the matrix element to the complex pole position. In order to get a meaningful procedure, another
kinematical variable, namely|Q|, should be fixed. This can be achieved in different ways:

• ChooseQ in the CM frame along the third axis, and consider asymmetricboxes, where the
side length along the third axis is different from other two;vary the side length only in the
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first two directions.

• Carry out the calculation of the matrix element at differentvolumes, but using twisted bound-
ary condition for the quark propagator in the nucleon which is attached to the external photon
(see Fig. 1). One may adjust the twisting angleθ so that the momentumQ stays fixed as
the box size varies. It is important that the pertinent valueof θ can be determined from
kinematics alone, prior to any simulations.

In practice, a combination of these two strategies can be also applied. Note also that fixing|Q|
is equivalent to fixing the Lorentz-invariant variablet = Q2 since, for a fixedE in the CM frame,
the energy of the photonQ0 = E− (m2

N+Q2)1/2 is also fixed (here,mN denotes the nucleon mass).
Further, the∆Nγ∗ matrix elements are described by the three Lorentz-invariant form factors

GM(t), GE(t), GC(t). In order to project out these, we construct the local operators that correspond
to a definite spin projection of the nucleon and the∆ on the third axis. LetOµ(x) andψ(x) denote
the ∆ and the nucleon interpolating fields, respectively, andJρ(x) is the electromagnetic current.
Let us introduce the following operators:

O3/2(t) = ∑
x

1
2
(1+Σ3)

1
2
(1+ γ4)

1√
2
(O1(x, t)− iΣ3O

2(x, t)) ,

O1/2(t) = ∑
x

1
2
(1−Σ3)

1
2
(1+ γ4)

1√
2
(O1(x, t)+ iΣ3O

2(x, t)) ,

Õ1/2(t) = ∑
x

1
2
(1+Σ3)

1
2
(1+ γ4)O

3(x, t)

ψ̄Q
±1/2(t) = ∑

x
eiQxψ̄(x, t)

1
2
(1±Σ3)

1
2
(1+ γ4) ,

J±(0) =
1√
2
(J1(0)± iJ2(0)) , (3.1)

whereΣ3 = diag(σ3,σ3). Consider now the following three-point functions:

R̃1/2(t
′, t) = 〈0|Õ1/2(t

′)J3(0)ψ̄ Q
1/2(t)|0〉 ,

R1/2(t
′, t) = 〈0|O1/2(t

′)J+(0)ψ̄ Q
−1/2(t)|0〉 ,

R3/2(t
′, t) = 〈0|O3/2(t

′)J+(0)ψ̄ Q
1/2(t)|0〉 , (3.2)

and define

D̃1/2(t) = Tr〈0|Õ1/2(t)
¯̃
O1/2(0)|0〉 ,

D1/2(t) = Tr〈0|O1/2(t)Ō1/2(0)|0〉 ,

D3/2(t) = Tr〈0|O3/2(t)Ō3/2(0)|0〉 ,

D±
Q(t) = Tr〈0|ψQ

±1/2(t)ψ̄
Q
±1/2(0)|0〉 . (3.3)
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It can be seen that, in the limitt ′ →+∞, t →−∞,

N
Tr(R̃1/2(t

′, t))

D̃1/2(t ′− t)

(

D+
Q(t

′)D̃1/2(−t)D̃1/2(t
′− t)

D̃1/2(t ′)D
+
Q(−t)D+

Q(t
′− t)

)1/2

→ 〈1/2|J3(0)|1/2〉 ,

−N
Tr(R1/2(t

′, t))

D1/2(t ′− t)

(

D−
Q(t

′)D1/2(−t)D1/2(t
′− t)

D1/2(t ′)D
−
Q(−t)D−

Q(t
′− t)

)1/2

→ 〈1/2|J+(0)|−1/2〉 ,

−N
Tr(R3/2(t

′, t))

D3/2(t ′− t)

(

D+
Q(t

′)D3/2(−t)D3/2(t
′− t)

D3/2(t ′)D
+
Q(−t)D+

Q(t
′− t)

)1/2

→ 〈3/2|J+(0)|1/2〉 , (3.4)

whereN = (4E
√

m2
N +Q2)1/2. Note that the above relations can be straightforwardly generalized

to include the excited states with the quantum numbers of the∆. We are interested in those states
which, at a given volume, have the energies close to the∆-mass.

The right-hand side of the above equations denotes the matrix elements that are directly mea-
sured on the lattice. The spin projection of the nucleon and∆ on the third axis is explicitly shown.
We further use a shorthand notationFi, i = 1,2,3 for these matrix elements. As already men-
tioned, theFi are measured in a finite volume. In case of an unstable∆, the infinite volume limit in
these matrix elements can not be performed straightforwardly. Our main aim is to show, how the
measuredFi can be related to the form factors in the infinite volume.

4. Extraction of the form factors

The extraction of the form factors is described in Ref. [6], where further details can be found.
In order to set up a framework for the extraction, the non-relativistic EFT in a finite volume is used.
The essence of the method is to carry out calculations twice:calculate the quantitiesFi in a finite
volume and the form factors in the infinite volume. Since in these calculations the same effective
Lagrangian is used, these two quantities are related. Reading off this relation, we ensure that it
does not depend on the explicit form of the Lagrangian which thus plays only an auxiliary role in
the derivation and disappears from the final results.

Our findings can be summarized as follows:

1. In order to calculate the∆Nγ∗ transition form factors, first evaluate the finite-volume matrix
elementsFi = Fi(E, |Q|) on the lattice for a fixedQ and different values ofE.

2. The multipoles for the pion photoproduction at a given energy E are obtained by multiplying
the quantitiesFi by the well-known Lüscher-Lellouch factor:

Ai(p, |Q|) = eiδ (p)V1/2
(

p2

2π|dδ (p)/dp+dφ(q)/dp|

)−1/2

|Fi(p, |Q|)| . (4.1)

Here,p is the relative momentum in theπN system, corresponding to the total energyE in
the CM frame,V is the volume,δ (p) denotes the phase shift in theP33 partial wave (to be
measured in the same simulation),q = pL/2π (for asymmetric boxes,L is the box size in
directions 1,2) andφ(q) is related to the Lüscher zeta-function in a standard mannerso that

5
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the Lüscher equation readsδ (p)+φ(q) = nπ , n= 0,1, . . . (here, the mixing to other partial
waves is neglected). The twisting angle, as well as the asymmetry parameter of the box are
not explicitly shown. The definition of the multipoles from Ref. [10] is used:

˜A1/2 = −16π iE
√

2
k
|k|S1+ (4.2)

A1/2 = −1
2
(3E1++M1+)(−16π iE),

A3/2 =

√
3

2
(E1+−M1+)(−16π iE),

wherek is the photon 3-momentum,k0 is the photon energy,k2 = k2−k2
0, andM,E,Sdenote

the pertinent magnetic, electric and scalar multipoles.

3. The resonance matrix elements, defined at real energies, are proportional to the imaginary
part of the multipoles at the energies, where the phase shiftpasses throughπ/2. Explicit
expressions can be found in Refs. [6, 10].

4. In order to extract the matrix element at the resonance pole, one has to first multiply eachFi

by the pertinent Lüscher-Lellouch factor

F̄i(p, |Q|) =V1/2
(

cos2 δ (p)
|dδ (p)/dp+dφ(q)/dp|

p2

2π

)−1/2

Fi(p, |Q|) (4.3)

and then one should fit the coefficients of the effective-range expansion for the matrix ele-
ment on the realp2-axis,|Q| fixed:

p3 cotδ (p) F̄i(p, |Q|) = Ai(|Q|)+ p2Bi(|Q|)+ · · · . (4.4)

5. Finally, the resonance matrix elements at the pole are obtained by the substitution

FR
i (pR, |Q|) = i p−3

R Z1/2
R (Ai(|Q|)+ p2

RBi(|Q|)+ · · ·) . (4.5)

wherepR is the complex momentum corresponding to the pole, and

ZR =

(

p
8πE

)2( 16π p3E3

wNwπ(2pd(p3 cotδ (p))/dp+3ip2)

)
∣

∣

∣

∣

p=pR

. (4.6)

Here,wN,wπ denote the on-shell energies of a nucleon and a pion with the three-momentum
p. The quantitiespR andZR should be evaluated separately from the measured phase shifts.

6. The form factors are related to the above resonance matrixelements through

F̃R
1/2 =

ER−k0
R

ER
AGC(tR)

FR
1/2 =

√

1
2

A(GM(tR)−3GE(tR)) ,

FR
3/2 =

√

3
2

A(GM(tR)+GE(tR)) , (4.7)
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whereER,k0
R, tR denote the full energy, the photon energy and the 4-momentumtransfer

squared at the pole, and

A=
ER+mN

2mN

√

2ER(k0
R−mN) . (4.8)

5. Conclusions, outlook

Using non-relativistic EFT in a finite volume, we have set up aframework for the extraction of
the∆Nγ∗ transition form factors from the lattice data. A counterpart of the Lüscher-Lellouch for-
mula for the pion photoproduction multipoles has been derived. The form factors at the resonance
pole have been defined.

The above result can be improved in a variety of ways. In particular, partial-wave mixing
(ignored so far) should be considered, as well as a resonancein the moving frame. Further, multi-
channel resonances deserve special attention (for the related work, see, e.g., Ref. [9]).
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