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1. Introduction

Quantum Chromodynamics (QCD) is the theory underlying strong interactions and can be
used to account for the different phases of strongly interacting matter under usual or unusual
(extreme) conditions. A transition or rapid crossover is thought to exist from a low-temperature
hadronic phase to a high-temperature Quark-Gluon Plasma (QGP) phase; the line separating these
two phases in the temperature - baryon density plane is called the QCD (pseudo)critical line. The
location of this line and the nature of the transition across it has many important theoretical and
phenomenological implications, which go from the physics of the early Universe (high T - low
baryon density region of the phase diagram), to the physics of the interior of some compact astro-
physical objects (corresponding to the low T - high density region). Various experiments have been
devised or have been planned in order to study this transition via heavy-ion collisions at ultrarel-
ativistic energies. Depending on the beam energy, different conditions of temperature and baryon
density can be realized in the fireball produced after the collision, such that the QGP phase appears
as a transient state, before the system freezes out and partons recombine into hadrons. For a given
collision energy, the particle yields are found to be well described by a thermal-statistical model
assuming approximate chemical equilibrium, as realized at the chemical freeze-out point, in terms
of only two parameters, the freeze-out temperature T and the baryon chemical potential µB. The
set of freeze-out parameters determined in experiments with different collision energies lie on a
curve in the (T,µB)-plane, extending up to µB . 800 MeV (see Fig. 1 of Ref. [2], or Ref. [3] for a
recent re-analysis of experimental data). Chemical freeze-out is reached as the fireball cools down,
subsequently to re-hadronization. A reasonable guess is that chemical freeze-out is reached shortly
after hadronization, so that the QCD (pseudo)critical line and the freeze-out curves lie close to
each other. In general they can be parametrized, at low baryon densities, by a lowest order Taylor
expansion in the baryon chemical potential, as follows

T (µB)

Tc(0)
= 1−κ

(
µB

T (µB)

)2

, (1.1)

where Tc(0) is the (pseudo)critical temperature at vanishing baryon density.

The QCD (pseudo)critical line can be determined within a first-principle approach exploit-
ing lattice gauge theory methods. But at nonzero baryon density, due to the well known "sign
problem", the QCD fermion determinant becomes complex and standard numerical simulations are
unfeasible. Several methods have been invented to attack this problem (for a review, see [4–7]).
In the present work we exploit the method of analytic continuation from an imaginary chemical
potential to give a first estimate of the QCD (pseudo)critical line using the HISQ/tree action [8, 9]
with 2+1 staggered fermions (see also Ref. [10]). The strange mass is set at the physical value and
simulations are performed on the line of constant physics (LCP) with the light quark mass fixed
at ml = ms/20, as determined in Ref. [1]. As for quark chemical potentials, in the present study
we assign the same value to the three quark species, µl = µs ≡ µ . We explore lattices of different
spatial extensions, 163 × 6 and 243 × 6, to check for finite size effects, and present results on a
323 ×8 lattice, to check for finite cut-off effects.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
7
1

Curvature of the QCD critical line with 2+1 HISQ fermions Leonardo Cosmai

2. Numerical results and discussion

We perform simulations of lattice QCD with 2+1 flavors of rooted staggered quarks at imag-
inary quark chemical potential. We have made use of the HISQ/tree action [8, 9] as implemented
in the publicly available MILC code, suitably modified by us in order to introduce an imaginary
quark chemical potential µ = µB/3. All simulations make use of the rational hybrid Monte Carlo
(RHMC) algorithm. The length of each RHMC trajectory has been set to 1.0 in molecular dynam-
ics time units. Simulations have been done on lattices of size 163×6, 243×6 and 323×8. We have
discarded typically not less than one thousand trajectories for each run and have collected from 4k
to 8k trajectories for each measurement. The (pseudo)critical line βc(µ

2) has been determined as
the value for which the disconnected susceptibility of the light quark chiral condensate exhibits a
peak. To precisely localize the peak, a Lorentzian fit has been used. Since we want to determine
the ratio Tc(µ)/Tc(0), we need to set the lattice spacing. This can be done following the discussion
in Appendix B of Ref. [1], where, for this particular value of ml/ms, the spacing is given in terms
of the r1 parameter:

a
r1
(β )ml=0.05ms =

c0 f (β )+ c2(10/β ) f 3(β )

1+d2(10/β ) f 2(β )
, (2.1)

with c0 = 44.06, c2 = 272102, d2 = 4281, r1 = 0.3106(20) fm [11] and

f (β ) = (b0(10/β ))−b1/(2b2
0) exp(−β/(20b0)) , (2.2)

where b0 and b1 are the universal coefficients of the two-loop beta function. From a(β ) we
determine, for each explored lattice size separately, Tc(µ)/Tc(0) = a(βc(0))/a(βc(µ)). Data for
Tc(µ)/Tc(0) versus µ/(πT ) are reported in Fig. 1. For the 163 ×6 lattice, where the determination
at three different values of µ is available, we have tried a linear fit in µ2:

Tc(µ)

Tc(0)
= 1+Rq

(
iµ

πTc(µ)

)2

, (2.3)

which works well over the whole explored range (χ2/d.o.f. = 0.39) and gives us access to the
curvature Rq. On the other lattices, assuming that linearity in µ2 still holds, we can extract Rq from
the determination at µ/(πT ) = 0.2i; we notice that such an assumption, for the given value of µ , is
consistent with all previous studies on the systematics of analytic continuation [16–19]. Our results
are:

Rq(163 ×6) = −1.63(22) , κ = 0.0183(24) ,

Rq(243 ×6) = −1.51(25) , κ = 0.0170(28) , (2.4)

Rq(323 ×8) = −1.70(29) , κ = 0.0190(32) ,

where κ = −Rq/(9π2) is the curvature parameter introduced in Eq. (1.1). The results provide
evidence that finite size and finite cut-off systematic effects are within our present statistical uncer-
tainties. We cannot yet try an extrapolation to the continuum limit of our results, however, taking
into account the statistical errors and the observed variations of the results with the lattice size and
the ultraviolet cutoff, our present estimate for kappa is

κ = 0.018(4) . (2.5)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
7
1

Curvature of the QCD critical line with 2+1 HISQ fermions Leonardo Cosmai

-0.06 -0.04 -0.02 0

(iµ/(πT))
2

0.95

1

1.05

1.1

1.15

T
c
(µ

)/
T

c
(0

)

Figure 1: Tc(µ)/Tc(0) versus ((iµ)/(πT ))2 obtained on a 163 × 6 lattice (full circles), on a 243 × 6 lat-
tice (full square) and on a 323 × 8 lattice (full triangle). For the sake of readability the abscissae at
((iµ)/(πT ))2 = −0.04 for 243 × 6 and 323 × 8 data have been slightly shifted. The full line is a linear
fit to the data on the 163 ×6 lattice.

In Figure 2 we compare our determination of the curvature κ defined in Eq. (1.1) with other lat-
tice results and with the estimates of the freeze-out curve. A preliminary result from the Pisa
group [12], obtained using the analytic continuation, gives κ = 0.0153(14) from the renormal-
ized chiral susceptibility and κ = 0.0144(7) from the renormalized chiral condensate on a 322 ×8
lattice. The Budapest-Wuppertal collaboration [14], using a Symanzik improved gauge action and
stout-link improved staggered fermions on lattices with temporal size Nt = 6,8,10 and aspect ratios
equal to three and four, finds, after continuum extrapolation, κ = 0.0089(14) by the Taylor expan-
sion method with the strange quark number susceptibility as probe observable and κ = 0.0066(20)
when, instead, the renormalized chiral condensate is used. The Bielefeld-BNL collaboration [13],
using the p4-action on lattices with Nt = 4 and 8, and aspect ratios up to four, finds κ = 0.0066(7)
again with the Taylor expansion method and the light quark susceptibility as a probe observable.
Another collaboration [15] adopted improved staggered fermions in the p4fat3 version, on lattices
with Nt = 4 and aspect ratio four with physical strange quark mass and pion mass at 220 MeV,
getting κ = 0.0100(2) by the method of analytic continuation, with the Polyakov loop phase as a
probe. Regarding the freeze-out curve, we report two different estimates. The first is from the anal-
ysis of Ref. [2], which is based on the standard statistical hadronization model; there the authors
parametrize the freeze-out curve as

Tc(µB) = a−bµ
2
B − cµ

4
B , (2.6)

with a = 0.166(2) GeV, b = 0.139(16) GeV−1, and c = 0.053(21) GeV−3, from which we have
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Figure 2: Comparison of different determinations of the curvature of the chemical freeze-out curve and of
the (pseudo)critical line for QCD with n f = 2+1. From left to right: i) analytic continuation, disconnected
chiral susceptibility, this study; ii) analytic continuation, renormalized chiral susceptibility, Ref. [12]; iii)
analytic continuation, renormalized chiral condensate, Ref. [12]; iv) Taylor expansion, chiral susceptibility,
Ref. [13]; v) Taylor expansion, chiral condensate, Ref. [14]; vi) Taylor expansion, strange quark number
susceptibility, Ref. [14]; vii) analytic continuation, Polyakov loop, Ref. [15]; viii) freeze-out curvature,
standard analysis, Ref. [2]; ix) freeze-out curvature, revised analysis of Ref. [3].

derived the κ value reported in Fig.2. The second estimate is based on the freeze-out points which
are reported in Table I of Ref. [3] and are based on a modified statistical reanalysis of the exper-
imental data which includes the effects of inelastic collisions taking place after freeze-out. Our
result for the curvature is typically between two and three standard deviations larger than previ-
ous lattice determinations and seems in a better agreement with the freeze-out curvature based on
the standard statistical hadronization model. Possible reasons for the disagreement with previous
lattice determinations can lie in the different methods adopted to avoid the sign problem, in the
different lattice discretizations, as well as in the different observables used to locate the transition
point, and in the setup of quark chemical potentials. We also report, in Fig. 3, an estimate of the
(pseudo)critical line which is based on our determination of the curvature. Regarding the value of
Tc at µB = 0, which is affected by larger finite size and finite cutoff effects than κ , we refer directly
to the presently accepted continuum extrapolated value, Tc ∼ 155 [1,20–22], and in particular to the
one obtained in Ref. [1] with the same action adopted in our study, Tc(0) = 154(9) MeV. From that
and from κ = 0.018(4) we obtain b = 0.117(27)GeV−1 (see Eq. 2.6). Freeze-out determinations
from Refs. [2, 3] are reported as well.

Let us conclude by discussing the possible sources of systematic effects in our estimate. One
of them is related to the extrapolation from imaginary to real chemical potentials: in the case of
the 163 × 6 lattice we have performed simulations at different values of imaginary µ , thus verify-
ing that a linear interpolation (in µ2) of data works well. For the other two lattices, instead, we
have considered only one value of imaginary µ (µ/(πT ) = 0.2i) and the linear behavior has been
assumed. Our previous studies based on analytic continuation, however, indicate that the chosen

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
7
1

Curvature of the QCD critical line with 2+1 HISQ fermions Leonardo Cosmai

0 0.2 0.4 0.6 0.8 1
µ

B

0

0.05

0.1

0.15

0.2

T
c(µ

B
)

This study with µ
l
=µ

s
=µ

B
/3

Figure 3: Tc(µB) versus µB (units in GeV). Experimental values of Tc(µB) are taken from Fig. 1 of Ref. [2]
(circles) and from Table I of Ref. [3] (squares) respectively for the standard and the modified statistical
hadronization model. The solid line is a parametrization corresponding to Tc(µB)= Tc(0)−bµ2

B with Tc(0)=
0.154(9)GeV and b = 0.117(27)GeV−1. The dashed lines represent the corresponding error band.

value of µ should lie well inside the region of linearity. Nevertheless, we plan to perform a more
systematic study of this issue. Finally, we have verified that finite size and cutoff effects are under
control, within the present statistical accuracy. Still, the extrapolation to the continuum limit, as
well as the extension to the physical value of the light to strange mass ratio, ml/ms ∼ 1/28, and the
possible effect of varying the strange quark chemical potential, deserve further investigations and
will be the subject of forthcoming works.

Acknowledgements

This work was based in part on the MILC Collaboration’s public lattice gauge theory code
(http://physics.utah.edu/~detar/milc.html) and has been partially supported by
INFN SUMA project. Simulations have been performed on BlueGene/Q at CINECA (CINECA-
INFN agreement).

References

[1] A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding, et. al., The chiral and deconfinement
aspects of the QCD transition, Phys.Rev. D85 (2012) 054503, [arXiv:1111.1710].

[2] J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Comparison of chemical freeze-out criteria in
heavy-ion collisions, Phys.Rev. C73 (2006) 034905, [hep-ph/0511094].

6

http://xxx.lanl.gov/abs/1111.1710
http://xxx.lanl.gov/abs/hep-ph/0511094


P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
1
7
1

Curvature of the QCD critical line with 2+1 HISQ fermions Leonardo Cosmai

[3] F. Becattini, M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer, et. al., Hadron Formation in
Relativistic Nuclear Collisions and the QCD Phase Diagram, Phys.Rev.Lett. 111 (2013) 082302,
[arXiv:1212.2431].

[4] O. Philipsen, The QCD phase diagram at zero and small baryon density, PoS LAT2005 (2006) 016,
[hep-lat/0510077].

[5] C. Schmidt, Lattice QCD at finite density, PoS LAT2006 (2006) 021, [hep-lat/0610116].

[6] P. de Forcrand, Simulating QCD at finite density, PoS LAT2009 (2009) 010, [arXiv:1005.0539].

[7] G. Aarts, Complex Langevin dynamics and other approaches at finite chemical potential, PoS
LATTICE2012 (2012) 017, [arXiv:1302.3028].

[8] E. Follana et. al., Highly improved staggered quarks on the lattice, with applications to charm
physics, Phys.Rev. D75 (2007) 054502, [hep-lat/0610092].

[9] A. Bazavov et. al., Scaling studies of QCD with the dynamical HISQ action, Phys.Rev. D82 (2010)
074501, [arXiv:1004.0342].

[10] P. Cea, L. Cosmai, and A. Papa, Critical line of 2+1 flavor QCD, Phys.Rev. D89 (2014) 074512,
[arXiv:1403.0821].

[11] A. Bazavov et. al., Results for light pseudoscalar mesons, PoS LATTICE2010 (2010) 074,
[arXiv:1012.0868].

[12] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, and F. Sanfilippo, The curvature of the QCD
critical line from analytic continuation, in these Proceedings, 2014.

[13] O. Kaczmarek, F. Karsch, E. Laermann, C. Miao, S. Mukherjee, et. al., Phase boundary for the chiral
transition in (2+1) -flavor QCD at small values of the chemical potential, Phys.Rev. D83 (2011)
014504, [arXiv:1011.3130].

[14] G. Endrodi, Z. Fodor, S. Katz, and K. Szabo, The QCD phase diagram at nonzero quark density,
JHEP 1104 (2011) 001, [arXiv:1102.1356].

[15] R. Falcone, E. Laermann, and M. P. Lombardo, Study of finite temperature QCD with 2+1 flavors via
Taylor expansion and imaginary chemical potential, PoS LATTICE2010 (2010) 183,
[arXiv:1012.4694].

[16] P. Cea, L. Cosmai, M. D’Elia, and A. Papa, The phase diagram of QCD with four degenerate quarks,
Phys.Rev. D81 (2010) 094502, [arXiv:1004.0184].

[17] P. Cea, L. Cosmai, M. D’Elia, and A. Papa, The critical line of QCD with four degenerate quarks, PoS
LATTICE2010 (2010) 173, [arXiv:1012.4908].

[18] P. Cea, L. Cosmai, M. D’Elia, A. Papa, and F. Sanfilippo, Two-flavor QCD at finite quark or isospin
density, PoS LATTICE2012 (2012) 067, [arXiv:1210.5896].

[19] P. Cea, L. Cosmai, M. D’Elia, A. Papa, and F. Sanfilippo, The critical line of two-flavor QCD at finite
isospin or baryon densities from imaginary chemical potentials, Phys.Rev. D85 (2012) 094512,
[arXiv:1202.5700].

[20] Y. Aoki, Z. Fodor, S. Katz, and K. Szabo, The QCD transition temperature: Results with physical
masses in the continuum limit, Phys.Lett. B643 (2006) 46–54, [hep-lat/0609068].

[21] Y. Aoki, S. Borsanyi, S. Durr, Z. Fodor, S. D. Katz, et. al., The QCD transition temperature: results
with physical masses in the continuum limit II., JHEP 0906 (2009) 088, [arXiv:0903.4155].

[22] S. Borsanyi et. al., Is there still any Tc mystery in lattice QCD? Results with physical masses in the
continuum limit III, JHEP 1009 (2010) 073, [arXiv:1005.3508].

7

http://xxx.lanl.gov/abs/1212.2431
http://xxx.lanl.gov/abs/hep-lat/0510077
http://xxx.lanl.gov/abs/hep-lat/0610116
http://xxx.lanl.gov/abs/1005.0539
http://xxx.lanl.gov/abs/1302.3028
http://xxx.lanl.gov/abs/hep-lat/0610092
http://xxx.lanl.gov/abs/1004.0342
http://xxx.lanl.gov/abs/1403.0821
http://xxx.lanl.gov/abs/1012.0868
http://xxx.lanl.gov/abs/1011.3130
http://xxx.lanl.gov/abs/1102.1356
http://xxx.lanl.gov/abs/1012.4694
http://xxx.lanl.gov/abs/1004.0184
http://xxx.lanl.gov/abs/1012.4908
http://xxx.lanl.gov/abs/1210.5896
http://xxx.lanl.gov/abs/1202.5700
http://xxx.lanl.gov/abs/hep-lat/0609068
http://xxx.lanl.gov/abs/0903.4155
http://xxx.lanl.gov/abs/1005.3508

