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1. Introduction and formulation

The calculation of derivatives of the QCD partition function with respect to external parameters
has always been a viable tool to explore the thermodynamics of quarks and gluons. However, in
recent years much effort has been put into the calculation of derivatives of the logarithm of the grand
canonical partition function with respect to various chemical potentials. After the Taylor expansion
approach had been established as a “solution” to the QCD sign problem at small chemical potentials
[1], it has quickly been realized that these expansion coefficients are of interest in their on right.
The coefficients describe cumulants of charge fluctuations. Their temperature dependence across
the QCD transition can be used to deduce the fundamental unit of charge of the effective degrees
of freedom in the system [2]. In the case of the strangeness and charm charge one is evan able to
separate the thermodynamic contribution of different strangeness (charm) sectors [3, 4]. Moreover,
evidence for experimentally not yet observed hadrons has been found [4, 5].

Most interesting is, however, the fact that cumulants of conserved charge fluctuations can also
be measured in heavy ion experiments as event-by-event fluctuations. Matching lattice data with
experimental results is a model free way to extract the temperature, volume and chemical potentials
of the fireball at the time of chemical freeze-out [5, 6, 7]. Event-by-event fluctuations have also
been discussed as a possible experimental signature for a QCD critical point early on [8]. It has
been pointed out that especially higher moments and cumulants are well suited for the critical point
search [9].

Let us define the cumulants in a more precise way: assuming three independent quark fla-
vors (up, down and strange) we have three chemical potentials associated with them, i.e., I =
(Wy, Ha, Us). Phenomenological, it might be advantageous to perform a coordinate transformation
in Gibbs space, and consider the baryon number (B), electric charge (Q) and strangeness () chem-
ical potentials i = (ug, U, MUs). Later on, we will also chose the basis [i = (g, 17, Us), Where
Mg = (Mu + Ua)/2 denotes the light quark chemical potential and p; = (U, — tg)/2 the iso-spin
chemical potential. On the lattice, the cumulants are generated as derivatives of the partition func-
tion

1 IHHKInZ(T, ug, 1o,
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VTP 9ppopgopg
where fly denotes the dimensionless expansion parameter /7T with X € {B,Q,S} and T being
the temperature. In the following we will drop indices if the corresponding oder of the derivative
is zero, as e.g. 95230%5 = x2. From experimental data of the detected charges for each event the cu-
mulants are accessible by means of their original definition, here shown for the first three diagonal
cumulants of even order
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2 = s (@M 0%y =3 (6% 07) ). (3
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The odd order cumulants vanish at fi = 0. Here 6Ny_g denote the deviation of the net amount
of charge from its mean, i.e., Ny _x = (Nx —Ng)— < Nx — Ny >, for X € {B,0Q,S}. All off-
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diagonal cumulants, also known as correlations, can be obtained by similar formulae. Measuring
the electric charges in the detector is rather easy for the experiments, a method to reconstruct net
baryon number and net strangeness fluctuations from ALICE data has recently been proposed [10].

In the following we discuss to what extent we can expect the cumulants to be governed by
universal critical behavior. Close to a second order phase transition QCD can be mapped to an
underling symmetry model, that exhibits the symmetries present at the phase transition point. It is
generally believed that in the chiral limit of two light flavors QCD features a second order phase
transition point that lies in the O(4) universality class [11]. Nonetheless, the possibility of a first
order transition has been discussed recently [12], which would move the second order end-point to a
finite light quark mass. At physical quark masses the possibility of a QCD critical point at non-zero
chemical potential is discussed widely. It shows up in various model calculations, however, due
to the infamous sign problem it could not firmly been established from ab-inito QCD calculations.
The RHIC low energy scan program is to a large extent motivated by the possibility of finding a
QCD critical point experimentally. This critical point is believed to be an end-point of a first order
line and as such belongs to the Ising (Z(2)) universality class. A generic QCD phase diagram is
shown in Fig. 1.

2nd order, O(4)
2nd order, Z(2)

1st order

crossover

Figure 1: Generic phase diagram of QCD, based on model calculations and model independent symmetry
arguments. Also indicated are the regions in the phase diagram where we are able to obtain results on
fluctuation observables from lattice QCD and experiments, respectively.

2. O(4) critical behavior

Independently on the universality class, RG theory predicts that the free energy has a singular
part that is responsible for the power laws that thermodynamic response functions exhibits near the
critical point. For degenerate light flavors m, = my; = m, we thus make the Ansatz

p

1 . o N
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where the singular part f; will become a generalized homogeneous function of its arguments once
the correct scaling fields have been chosen as its natural variables. For all O(N) and Z(N) models
we are left with two relevant scaling fields, the temperature-like (¢) and external field-like scaling
fields (). Considering a critical point in the chiral limit (m, = 0) and at zero chemical potentials
(ft = 0) the leading order dependence of the scaling fields on T,m,,my,[i are determined by a
symmetry argument, i.e. to leading order 2 depends only on couplings that break chiral symmetry
in the light quark sector, while ¢ depends on all other couplings. We find

1 my

1 (T-T. N A N
t < + KL + Kl fls + Kvuf) and h= , (2.2)
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where T, is the phase transition temperature and 7y, ig are non-universal scale parameters. Here we
have adopted the [i = (g, U7, l4s) basis and assume p; = 0 as a finite y; would break the flavor
symmetry in such a way that a different symmetry breaking pattern would arise. Furthermore, we
assume 1, to be fixed at the physical strange quark mass. With the above scaling fields we can
exploit the property of homogeneity of the function f; to obtain

folt,h) = hoh' V0 fr(2) = hoh®= /PO fp(2)  with  z=1/h"/P?. (2.3)

The function fy is a universal scaling function that depend on a single scaling variable z. In this
way we have singled out the leading order singular behavior, but have neglected sub-leading terms
that are produced by irrelevant scaling variables and are known as corrections to scaling. From
here we can easily obtain the magnetic equation of state [13] M = h'/9 f; (z) by taking a derivative
with respect to H = hoh, where the scaling function fg is connected to f by

fo@)=—(1+87") fr(2) +2(BS) " f}(2) . 2.4)

Note that this scaling form is not the famous famous Widom-Griffiths from, as the scaling variables
do not depend on the Magnetization. It is however well suited for a comparison with QCD where
the calculated magnetization, which can, e.g., be defined as M = m (yy) /T* has statistical and
systematical errors. Such an enterprise has been undertaken and the non-universal constants #y, /1o
have been determined [13]. More importantly it has been found that for an external field H =
mgy/ms = 1/27 that correspond to physical quark masses, the scaling Ansatz is still valid. The
relative contribution of the regular part has been found to be small for H-derivatives of the QCD
partition function. Given the parameters hy, fy, the non universal parameter &, has been determined
in [14], by analyzing the mixed susceptibility x,, = 9> f,/(dHd uqz). Systematic uncertainties of
the normalization constants 7o, iy and Kk, have yet to be removed, i.e., a continuum extrapolation of
these quantities — eventually with two differed actions — is still to be performed.

If we now take derivatives with respect to u, we will be able to make a prediction on the sin-
gular part that is present in the light quark number cumulants as defined in Eq. (1.1) and Eqgs. (1.2)-
(1.4). At i = 0 the general structure of the cumulants is given by

X8 ~mg (). 25)

For the 3-dim. O(4) symmetric model the exponent ¢ is approximately & ~ —0.21, which means
that the fourth order cumulant develops a cusp in the chiral limit, while the sixth order cumulant is
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the first to diverge. As the singular part of the second and fourth order cuamulants remain finite even
in the chiral limit we expect this observables to be dominated by the regular part of the free energy.
Once the normalization constants 7o, hg, K, are determined precise enough the absolute strength of
the singular part will also be fixed. For the here used HISQ action this is work in progress [15]. A
parameterization of the scaling function f; was determined in [16]. In Fig. 2 (left panel) we show
the second and third derivative of the scaling function ff(z), which resembles up to a constant
the singular of the cumulants x{ and xJ. For comparison we show lattice data on the middle
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Figure 2: Second and third negative derivative of the universal scaling function f(z) (left panel), forth and
sixth oder cumulants of net up quark number fluctuations and net strangeness (middle) and (right) panels,
respectively.

and right panels, obtained by using the HISQ action at quark mass values of m,/m,; = 1/20. As
the sixth oder light quark number fluctuations is very noisy, the middle panel shows the up quark
number fluctuations x4 and x¢, which should serve here as a proxy for x/ and /. The singular
contributions to both of these quantities should be identical, they are however likely receiving
different contributions from the regular part. Indeed, if we compare the left and middle panels, the
general structure of the sixth order up quark cumulant shows evidence for a typical O(4) singular
behavior. This is not the case for the cumulant of the net strangeness fluctuations, which are shown
in the right panel.

From the structure of the third derivatives we can derive at least two distinct universal numbers,
which is the ratio of the heights of the minimum above and the minimum below 7.. From the
scaling function one finds a ratio of 1.734(75)[16]. Even though we lack the total normalization,
and neglect the regular part, this ratio can also be determined from the x¢ data. At the present
accuracy, we obtain a consistence result of roughly 1.5(5). If it can be shown that the regular part is
small, this ratio is interesting, since the the minimum above 7, which is much cheaper to calculate,
does already determine the strength of the singular part below 7.

The second interesting universal number is the difference between the two peaks. Given the
non-universal normalization constants g, g, the universal number of Az ~ 3 can be translated into
a temperature difference. As the distance shrinks to zero in the chiral limit, one thus obtains a
parameterization of the width of the crossover transition as seen by the sixth order cumulant. From
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Figure 3: Negative fourth derivative the universal O(4) scaling function f(z).
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X, we estimate the width to be of the order of (20 —30) MeV at physical quark masses.

3. Critical behavior at nonzero chemical potential

Finally we want to mention that the structure of the singular behavior of the cumulants be-
comes rather different ones the critical point sits at a nonzero chemical potential. The temperature

like scaling field can now be linearized around the critical chemical potential /.L;’” and can be
written as
1 (/T-T, critr A R
= t< - +21<qu;’”(uq—u;’”)> : (3.1)
0 c

where we assume ,u§”" = 0 and have suppresed the g dependence. Furthermore, the derivatives
are supposed to be taken at (or close to) ugri’. The general singular structure of the cumulants,
which we was given in (2.5) for the case of fi = 0, now turns into

X8 ~mZ O (2) (3.2)

If we now also assume that the critical point lies in the universality class of the 3-dim. Ising model

(Z(2)) we find o ~ 0.11 and divergences start already at the second order.

The forth order cumulant is dominated by the term 4~ (2+®)/(Bd) f(4)(7) which we have
plotted in Fig. 3 for the O(4) case. We immediately see the different structure of the singular
contribution if we compare with the second derivative of f¢(z) in Fig. 2. The ratio between the
peak below T, an just above 7, is of the order of 25. This structure is the reason why the kurtosis
(X2 /x%) might have a negative dip on the freeze-out line, depending on how close the freeze-out
line passes by the critical point [17].
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