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We evaluate quark number densities at imaginary chemical potential by lattice QCD with clover-
improved two-flavor Wilson fermion. The quark number densities are extrapolated to the small
real chemical potential region by assuming some function forms. The extrapolated quark number
densities are consistent with those calculated at real chemical potential with the Taylor expansion
method for the reweighting factors. In order to study the large real chemical potential region, we
use the two-phase model consisting of the quantum hadrodynamics model for the hadron phase
and the entanglement-PNJL model for the quark phase. The quantum hadrodynamics model
is constructed to reproduce nuclear saturation properties, while the entanglement-PNJL model
reproduces well lattice QCD data for the order parameters such as the Polyakov loop, the ther-
modynamic quantities and the screening masses. Then, we calculate the mass-radius relation of
neutron stars and explore the hadron-quark phase transition with the two-phase model.
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1. Introduction

QCD phase diagram and the neutron stars (NSs) are important topics for studying the prop-
erties of QCD in finite chemical potential (µ) region. The quark number density is a fundamental
quantity in this region and plays an important role of determining the strength of the vector-type
interaction in the effective model. However, lattice QCD (LQCD) as a first-principle calculation
has the sign problem at finite µ . So far, the quark number density has been studied by the Taylor
expansion method for the reweighting factor at real µ with Wilson-type quark actions [1] and by
the analytic continuation from imaginary to real µ with staggered-type quark actions [2, 3].

In this study, we calculate the quark number density at imaginary µ (µI ≡ iµ) with Wilson-type
quark action. Then, the quark number density is extrapolated to real µ region with analytic contin-
uation by assuming some function forms1. In the imaginary µ region, QCD has two characteristic

Figure 1: QCD phase diagram in the imaginary µ
region.

properties: one is the Roberge-Weiss (RW) pe-
riodicity in the QCD partition function and the
other is so called the RW transition of first or-
der [4]. The partition function has a period-
icity of 2π/3 as a function of µI/T , namely
Z(µI/T ) = Z(µI/T +2π/3). The transition ap-
pears on µI/T = π/3 at high temperature above
TRW where TRW is the RW endpoint. Using
these properties, we proceed our calculation
and analysis.

In order to study the large real µ region,
we use the two-phase model consisting of the
quantum hadrodynamics (QHD) model for the hadron phase and the entanglement-PNJL (EPNJL)
model for the quark phase. The QHD model is satisfied with the nuclear saturation properties [5]
and the EPNJL model reproduces well the full LQCD results at zero and imaginary µ [6, 7]. In
addition, we determine the strength of the vector interaction for the EPNJL model using the quark
number density calculated with LQCD. Then, using the two-phase model, we discuss the mass-
radius (MR) relation of the NSs and explore the hadron-quark phase transition line.

2. Quark number density

The quark number density (n) is defined as

n
T 3 =

1
V T 2

∂
∂ µ

lnZ =
N f N3

t

NV
tr

[
∆−1 ∂∆

∂ µ̂

]
, (2.1)

where T is the temperature, V is the volume, Z is the QCD partition function, N f is the number of
flavors, Nt is the temporal lattice size, NV is the lattice volume, µ̂ is the chemical potential in lattice
units and ∆ is the fermion matrix. We apply the random noise method for the trace in Eq.(2.1).

The quark number density is an odd and a smooth function of µ in the hadron phase because
there is no RW transition, but not smooth at µI/T = π/3 in the quark phase because there exists

1Please see Sec. 2 in detail
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the RW transition. In order to extrapolate the quark number density at imaginary µ , we fit them by
using the Fourier series in the hadron phase,

f 1
F

(µI

T

)
= F(1)

o sin
(

3
µI

T

)
, (2.2)

f 2
F

(µI

T

)
= F(1)

o sin
(

3
µI

T

)
+F(2)

o sin
(

6
µI

T

)
, (2.3)

and the polynomials of µI/T in the quark phase,

f 3
p

(µI

T

)
= p(1)

o

(µI

T

)
+ p(3)

o

(µI

T

)3
, (2.4)

f 5
p

(µI

T

)
= p(1)

o

(µI

T

)
+ p(3)

o

(µI

T

)3
+ p(5)

o

(µI

T

)5
. (2.5)

By replacing µI/T by µ/T , these are easily continued to real µ:

f 1
F

(µ
T

)
= F(1)

o sinh
(

3
µ
T

)
, (2.6)

f 2
F

(µ
T

)
= F(1)

o sinh
(

3
µ
T

)
+F(2)

o sinh
(

6
µ
T

)
, (2.7)

f 3
p

(µ
T

)
= p(1)

o

(µ
T

)
− p(3)

o

(µ
T

)3
, (2.8)

f 5
p

(µ
T

)
= p(1)

o

(µ
T

)
− p(3)

o

(µ
T

)3
+ p(5)

o

(µ
T

)5
. (2.9)

3. Results of the lattice simulations and their analytic continuation

We employed the clover-improved two-flavor Wilson fermion action and the renormalization-
group improved Iwasaki gauge action. The simulations were performed on a lattice of Nx ×Ny ×
Nz ×Nt = 8× 8× 16× 4. We computed the quark number densities along the line of constant
physics with mPS/mV = 0.80 [8]. We considered five temperatures T/Tc = 0.93, 0.99, 1.20, 1.35
and 2.07 where Tc is the critical temperature at µ = 0. We measured the quark number densities at
every 100 trajectories.

Figure 2 shows µI/T dependence of n/T 3 represented by the green symbols. When the tem-
perature is below Tc, n/T 3 behave as the sine function, and when the temperature is above TRW,
n/T 3 increase monotonically up to µI/T = π/3. Moreover, figure 2 shows our results of fitting our
lattice results by eqs.(2.2)-(2.5) in order to extrapolate the quark number density from imaginary to
real µ . The two fittings give the same quality of agreement with lattice data for all temperatures.

Figure 3 shows the quark number densities at real µ extrapolated from imaginary µ by
eqs.(2.6)-(2.9) for T/Tc = 0.99 on the left panel and for T/Tc = 1.20 on the right panel. In the
previous study [1], the Taylor expansion coefficients of the quark number densities up to 3rd order
has been calculated at real chemical potential directly with the Taylor expansion method for the
reweighting factors. As one can see, at T/Tc = 1.20, our result is consistent with the previous
results.

For T < Tc, as an estimate of the accuracy of the Fourier series up to the next to leading order,
we assume that the Fourier series is reliable when the next to leading order contribution is smaller
than 10 % of the leading order contribution. For T > TRW, as an estimate of the accuracy of the

3
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Figure 2: The left panel shows µI/T dependence of n/T 3 at T < Tc. Blue solid lines and red dashed lines
are the results of fitting by f 1

F(µI/T ) and f 2
F(µI/T ), respectively. The right panel shows µI/T dependence of

n/T 3 at T > TRW. Blue solid lines and red dashed lines are the results of fitting by f 3
p(µI/T ) and f 5

p(µI/T ),
respectively.
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Figure 3: The left panel shows µ/T dependence of n/T 3 at T/Tc = 0.99 by the analytic continuation. Blue
and red areas are the results of the analytic continuation by f 1

F(µ/T ) and f 2
F(µ/T ), respectively. The right

panel shows µ/T dependence of n/T 3 at T/Tc = 1.20 by the analytic continuation. Blue and red lines are
the results of the analytic continuation by f 3

p(µ/T ) and f 5
p(µ/T ), respectively. The errors of the polynomial

coefficients of f 3
p(µ/T ) and f 5

p(µ/T ) are within the thickness of lines.

Taylor expansion series up to the 5th order, we assume that the expansion series is reliable when the
5th order contribution is smaller than 10 % of the 3rd order contribution. Figure 4 shows the upper
limit of the reliable extrapolated region as a function of T . The upper limit of the extrapolation
from imaginary to real µ goes up as T increases. This indicate that the higher-order contributions
become less important.

4. Analyses by the effective model

In order to extrapolate the quark number density to the large real µ region, we adopt the two-
phase model with the mean field approximation. This model consists of the EPNJL model for the
quark phase and the QHD model for the hadron phase. The phase is determined from the Gibbs
condition.
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Figure 4: The upper limit of the reliable extrapolated region as a function of temperature.

The Lagrangian density of the EPNJL model is

LEPNJL = q̄(iγνDν −m0)q+Gs(Φ)
[
(q̄q)2 +(q̄iγ5~τq)2]

−Gv(Φ)(q̄γνq)2 −U (Φ[A],Φ∗[A],T ), (4.1)

where q is the quark field, m0 is the current quark mass and Dν = ∂ ν + iAν for Aν = gδ ν
0 (A4)aλa/2,

(Aν)a is the gauge field, λa is the Gell-Mann matrix and g is the gauge coupling. Gs(Φ) and Gv(Φ)
are the coupling constants of the scalar- and vector-type four-quark interactions depending on the
Polyakov loop Φ,

Gs(Φ) = Gs
[
1−α1ΦΦ∗−α2(Φ3 +Φ∗3)

]
, Gv(Φ) = α3Gs(Φ). (4.2)

The effective potential U as a function of Polyakov loop is determined from lattice results in the
pure gauge limit. The parameters α1 = α2 = 0.2, which are determined so as to reproduce well the
full LQCD results for the deconfinement and chiral transition lines at zero and imaginary µ [6].
The parameter α3 is determined from the full LQCD results for n/nSB in the limit µ → 0.

Figure 5 shows T dependence of n/nSB in the limit µ → 0. In lattice calculations, n is divided
by the Stefan-Boltzmann (SB) limit for the lattice action in order to eliminate finite-volume effects.
In model calculations, n is divided by the SB limit in the continuum theory. The cross symbols
represent our lattice results. These are consistent with the previous study [1]. The blue-dotted and
red-solid lines represent the results of the EPNJL model with Gv = 0 and Gv = 0.33Gs, respectively.
Obviously, the result of the EPNJL model with vector interaction is consistent with the LQCD
results. The dashed line represents the result of the EPNJL model with Gv = 0.33Gs in which
m0 set to the physical value 5.5 MeV. In ref. [9], it was shown that m0 dependence of the ratio
α3 = Gv/Gs is weak. Therefore, in the following, we use the EPNJL model with m0 = 5.5 MeV
and α3 = 0.33 for the quark phase.

The Lagrangian density of the QHD model is

LQHD = ψ̄(iγν∂ν −mN −gσ φ −gωγνων)ψ +
1
2

∂ νφ∂νφ

−1
4
(∂ µων −∂ νωµ)(∂µων −∂νωµ)−UQHD, (4.3)

UQHD =
1
2

m2
σ φ 2 +

1
3

g2φ 3 +
1
4

g3φ 4 − 1
2

m2
ωωνων , (4.4)
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Figure 5: The ratio n/nSB as a function of temperature in the limit µ → 0.

where ψ , φ , ων , mN , mσ and mω are nucleon(N), σ -meson and ω-meson fields and their masses,
respectively, while gσ , gω , g2 and g3 are σ -N, ω-N and higher-order couplings, respectively. We
use the NL3 set [5] as the parameter set of the QHD model.

In Fig. 6, the left panel shows the MR relation of NSs where Msol means the solar mass. This
relation is obtained by solving the Tolman-Oppenheimer-Volkoff equation. Our results are satisfied
with the observation data of the neutron star with twice a solar mass [10]. The quark-hadron phase
transition occurs where the MR-relation curve bends. After this point, the neutron star has the
quark phase in its inner core. In Fig. 6, the right panel shows the phase diagram in the µB-T plane
for the hadron-quark phase transition. µB means the baryon chemical potential. Our result of the
two-phase model with Gv = 0.33Gs is µc ∼ 1.6 GeV which is the critical chemical potential at
T = 0. This value is consistent with the previous study [11]. When Gv = 0, µc is shifted down.
Therefore, the contribution of the vector-type four-quark interactions is quite important.
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Figure 6: The left panel shows the mass-radius relation of NSs. The right panel shows the QCD phase
diagram.

5. Summary

We calculated the quark number density at imaginary µ by LQCD with clover-improved two-
flavor Wilson fermion. When the temperature is below Tc, the quark number densities behave
as the sine function, and when the temperature is above TRW, these increase monotonically up to
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µI/T = π/3. The quark number densities are extrapolated from imaginary to real µ with ana-
lytic continuation. For T < Tc, we used the Fourier series and, for T > TRW, we used the Taylor
expansion series of µI/T . Our extrapolated result at T/Tc = 1.20 is consistent with the previous
study [1]. Furthermore, by estimating the higher order contribution, we showed that the analytic
continuation of the quark number density from imaginary to real µ may be valid up to µ/T ∼ 0.8.

In order to study the large real µ region, we use the two-phase model consisting of the QHD
model for the hadron phase and the EPNJL model for the quark phase. First, we determine the
strength of the vector-type four-quark interaction in the EPNJL model by using the results of the
normalized quark number density n/nSB calculated with LQCD. The results indicate that, when the
ratio α3 = Gv/Gs = 0.33, the EPNJL model reproduces well the LQCD data. Next, we calculated
the MR relation of NSs. Our results are satisfied with the observation data of the neutron star with
twice a solar mass [10]. In addition, our present model predicts that the neutron star has the quark
phase in its inner core. Finally, we explored the hadron-quark phase transition in µB-T plane. Our
result of the two-phase model with Gv = 0.33Gs is µc ∼ 1.6 GeV, which is consistent with the
previous study [11]. When Gv = 0, µc is shifted down. Thus, the contribution of the vector-type
four-quark interactions is quite important.
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