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Temperature dependence of meson screening masses; a comparison of effective model with lattice QCD
Masabhiro Ishii

1. Introduction

Meson masses are not only fundamental quantities of hadrons but also a key to know properties
of quantum chromodynamics (QCD) vacuum. At finite temperatlije e can define two kinds
of meson masses, pole and screening mass. Meson pole masses are one of the possible observables
in the heavy ion collisions. Screening masses of light mesons are essential for the range of the
nuclear force. Accordingly, it is necessary to construct the effective model for calculating pole and
screening mass simultaneously.

In lattice QCD(LQCD), meson pole (screening) masses are calculated from the exponential
decay of temporal (spatial) mesonic correlation functions. LQCD simulations are more difficult for
pole masses than for screening masses, since the lattice size is smaller in the time direction than in
the spatial direction. This situation becomes more seriodsiasreases. For this reason, meson
screening masses were calculated in most of the LQCD simulations. Recently, a state-of-the-art
calculation was done for meson screening masses in a wide raige 800 MeV [I]

Constructing the effective model is an approach complementary to the first-principle LQCD
simulation. In contrast to LQCD simulations, meson pole masses are extensively investigated at
finite T by the Nambu—Jona-Lasinio (NJL) mod&|[g], the Polyakov-loop extended Nambu—Jona-
Lasinio (PNJL) model]. However, only a few trials were made so far for the evaluation of meson
screening massed; o, [2 B]; here & means a species of mesons. The model calculations have
essentially two problems. One problem is that the NJL-type models are nonrenormalizable and
hence the regularization is needed in the model calculations. The regularization commonly used is
the three-dimensional momentum cutoff. The momentum cutoff breaks Lorentz and translational
invariance, thereby the spatial correlation functipi (r) has an unphysical oscillatioB][ This
makes the determination M, . quite difficult, sinceMg <., is defined from the exponential decay
of ng(r) at large distancery:

din r
Mg sor = — lim dinnee(r). (1.1)

r—oo dr

Another problem is the feasibility of numerical calculations. In the model approgely,) is
first obtained in the momentund)(representatio; ¢ (0,3?). In the Fourier transformation to the
coordinate representation=€ |X),

3

d . 1 o o
16e(1) = [ GraXee ORI = o [ dd axee(0.8)e™ 12)

The integrand is slowly damping and highly oscillating particularly at largéereM; ., is de-
fined. This requires heavy numerical calculations. It was then proposed that the contour integral
was made in the complexglane [B]. However, the contour integral is still hard to do because of
the presence of the temperature cuts in the vicinity of the real @kisde the left panel of Fidfl,
where note that is an infinitesimal quantity.

In this talk, we propose a new formalism for calculating screening mass and discuss the pos-
sibility of the prediction for pole mass from screening mass by using effective model. This talk is
based on the papdi|[
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Fig. 1. Singularities ofxs (0, ¢?) in the complexgplane based on the previous formulati@h (left) and
the present formulation (right). Cuts are denoted by the wavy lines and poles by the points.

2. Formalism

The Lagrangian density of the two-flavor EPNJL mo@li§ defined as
2 = qliyyD" —mo)q+ Gs(®)[(qa)? + (qiysTa)?] — % (P[A], @A, T) (2.1)

with the quark fieldg, the current quark massy and the isospin matriX. The coupling constant
Gs( @) of the four-quark interaction depends on the Polyakov Idoas

Gs(®) = Gs [1— a1 0@ — ap (0% + %], (2.2)

whereDY = ¥ +iAY with AY = §Jg(A%)aa/2 = —Yig(As)aka/2 for the gauge fieldy;, the
Gell-Mann matrixA; and the gauge couplingg Whenai = a» = 0, the EPNJL model is reduced
to the PNJL mode(].

In the EPNJL model, only the time componentAjf is treated as a homogeneous and static
background field, which is governed by the Polyakov-loop poter#alThe Polyakov loopp and
its conjugatecE are then obtained in the Polyakov gauge by

@ =1irg(L), @ =1tre(LY) (2.3)

with L = expliA4/T] = expidiag(AL, A32 A3%)/T] for the classical variablea) satisfying that
AL+ A22+ A33 = 0. For zero chemical potentiah equals tod. Hence it is possible to s&f3 =0
and determine the others A3? = —Al' = cos }(3%-1)T. We use the logarithm-type Polyakov-
loop potentialZ of Ref. [{], but refit the parametel, to reproduce the chiral phase transition
temperaturel. because the original value @§ is set to 270 MeV which is the deconfinement
transition temperature in the pure gauge limit.

Making the mean field approximation f&.{)) and the path integral over the quark field, one
can get the thermodynamic potential (per unit volume) as

d3 1 —
Q= U|\/| + % — 2Nf / (27_;)3 |:3Ep —+ B In [1+3((D+ (DeiﬁEp)eiBEp —i—E*SBEp]

1 _
+ Eln [1+3(¢>+¢e—ﬁEp)e—l3Ep+e—SBEp]
(2.4)
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with B =1/T, M = my — 2G5(®P) 0, Ep = /2 + M2, andUy = Gs(®)0?. Here,o means chiral
condensatéqq). Ns is the number of flavors. We determine the mean field variales ¢, @, @)

from the stationary conditions fdg,
2Q

X
Since the momentum integral @.8) diverges, we use the Pauli-Villars (PV) regularizat@n [
[8. In the scheme, the integrIM, q) is regularized as

0. (2.5)

2
Ireg(M>q) = ZOC(XI(MG>q)> (26)

whereMo =M andM, (o > 1) are masses of auxiliary particles. The parameirandC, should
satisfy the conditiory2_oCq = ¥2_,CaM2 = 0. We then assumgC,C;,Cy) = (1,1,—2) and
(M2 M32) = (M?+2A2 M2+ A2). We keep the parametérfinite even after the subtractio.f),
since the present model is nonrenormalizable. The parameters takeg aré.3 MeV, Gs = 5.0
GeV 2 andA = 0.768 GeV. This parameter set reproduces the pion decay corigtar83.3 MeV
and the pion magi§l;; = 138 MeV at vacuum.

We derive the equations for pion and sigma-meson masses, followingdJReaVg consider
currents with the same quantum number as pRrad sigma-mesor§|,

Jp?(X) = aX)iysTa(x) , Is(x) = aX)a(x) — (GX)a(x))- (2.7)

The Fourier transform of the mesonic correlation functigg(x) = (O[T <J5 (x)J:{(O)> |0) is

Xee (6) =1 [ ' &™(0IT (3(x3}(0)[0), (2.8)

whereé = P2 for pion andSfor sigma meson and T stands for the time-ordered product. Using the
random-phase (ring) approximation, one can objginas follows,

Xet — ——E 29
1— 2G4(®) ;¢
where the one-loop polarization functiéy; is explicitly obtained by
Mss=2iNil1+ 12— (% = 4M?)l3] , Mpp = 2iNi[l1 +12 — ols], (2.10)
with
d4p 1 d4p 1
|1—/(27T)4trc|:p/2_M2}7 |2—/(2n_)4trc[(p,+q)2_lvl2:|, (2.11)
d*p 1
|3 - /(27.[)4trc|:{(p/+q)2_MZ}(pIZ_MZ):|7 (212)

Here,q? = g3 — §° and p' = (po + A4, P). trc means the trace of color matrix. For finife the
corresponding equations are obtained by the replacement

4 o0 3
Po — i =i(2l +1)mT , /(gnl;%iT > / d p3. (2.13)
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The meson pole masd; . is a pole ofxgg(qé,qz). Taking the rest frameg = (dp, ) for
convenience, one can get the equationMigr, e as

[1—2Gs(®) Mg (05,0)] | Go=Mg e = O (2.14)

The method of calculating meson pole masses is well established in the PNJL Hjodel |

The meson screening malgls o, defined with[LT) is obtained by making the Fourier trans-
form of xs¢ (0, %) as shown in[[:2). In the previous formalisn3, however, the procedure re-
quires heavy numerical calculations in th&’ part, as shown below, whet§® means a function
after the PV regularization. Taking theummation before thgintegral in .13, one can describe
I5°9(0,6?) as the sum of the vacuum and temperature pEffs, andlz ,, defined by

" —iN 2M
550.6) = o z Ca I + e (27 ). (2.15)
o iNg 2 i )
I3em(0.0) = 155 > Ca / d|Pl fiem(|Pl,0) [F* (Ep) +F~(Ep)], (2.16)
a=0

V14X +1 10, ((@—2p)*+€?
Vac = vV1+X2In (\/7 1), tem(]rj\ ) g, g In (MW>,(2.17)

whereF.. are the Fermi distribution functionk.. are defined as

1e 1
Ne i; SEptiA])/T | 1

In @I, thee? term is added to make tH@| integral well defined agj = +2| |, but this requires
the limit of € — 0.

As shown in the left panel of Fifl, fyac(2My/6) and fiem(| P, ) have the vacuum and tem-
perature cuts in the complexplane, respectively. IHI(2), the cuts contribute to thgifitegral in
addition to the pole af = iM¢ ., defined by

FE(Ep) = (2.18)

[1—2Gs(®) £ (0,6)]| (2.19)

G=iMg ser
It is not easy to evaluate the temperature-cut contribution, sind&2) the integrand is slowly
damping and highly oscillating with Aear the real axis in the complepplane. Furthermore we
have to take the limit o — O finally. In order to avoid this problem, we integrate abpirt .13
before taking Matsubara summatidn. Consequently, we can rewritgg as an infinite series of
analytic function,

T NC 0 2 g
1°9(0,6%) = Cosint| —2— |, (2.20)
4ng Z'* °°°’Z° VE+ME,

Misa(T) = /M2 +{(2 + 1)7T +AJ2, (2.21)

We have numerically checked that the convergenckesafmmation is quite fast if2(20Q). Each
term of13°%(0,2) has only two cuts starting from2iM; 4 on the imaginary axis in the complex ~

where
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plane. The cuts are shown in the right panel of EigT he lowest branch point &= 2iM;_1 |0 a0
Hence Mi_1—o q—o is regarded as “threshold mass” in the sense that the meson screening-mass
spectrum becomes continuous above the point.

If Mg scr < 2Mi—11-0,0=0, the pole atg= iMg ¢, is well isolated from the cut. Hence one
can take the contour (AB—C—D—A) shown in the right panel of Fidll The g integral of
Gxz¢ (0, %€ on the real axis indD) is then obtained from the residue at the pole and the line
integral from point C to point D. The former behaves as[eX); .+]/r at larger and the latter as
exp—2Mi—1,—o0,a—0f]/r. The behavior ofjs¢(r) at larger is thus determined by the pole. One can
then determine the screening mass from the location of the pole in the complar€ without
making theqiintegral. In the highF limit, the condition tends tds 5., < 27T.

3. Numerical Results

The pion screening mad4; sc; obtained by state-of-the-art 2+1 flavor LQCD simulatids [
is now analyzed by the present two-flavor EPNJL model simply, since pion is composethdf
d quarks. This is a quantitative analysis, because the finite lattice-spacing effect is not negligible
in the simulations. The chiral transition temperature is evaluate} as196 MeV in the sim-
ulations [, although it becomed3. = 154+9 MeV in finer 2+1-flavor LQCD simulationgg]
close to the continuum limit. Therefore, we rescale the LQCD results of [Befifh multiplying
them by the factor 154196 to reproducd. = 154+ 9 MeV. The model parametersy andTo,
are refitted to reproduce the rescaled 2+1 flavor LQCD dataM#g~ 175 MeV at vacuum and
T, = 154+ 9 MeV; the resulting values argy = 10.3 MeV andTy = 156 MeV. The variation of
mp from the original value 8 to 103 MeV little changesr and @.

As shown in Figl, the My s, calculated with the EPNJL model (solid line) well reproduces
the LQCD result (open circles), when = a, = 0.31. In the PNJL model witlw; = a, = 0, the
model result (dotted line) largely underestimates the LQCD result, indicating that the entanglement
is important. The dashed line denotes the sigma-meson screeningvpagsobtained by the
EPNJL model witha; = a, = 0.31. The solid and dashed lines are lower than the threshold mass
2Mi-1=0,0=0 (dot-dashed line). This guarantees that Miescr and Mg scr determined from the
location of the single pole in the complepplane agree with those from the exponential decay of
Nege(r) at larger. The chiral restoration takes placeTat= Tc = 154 MeV, sincéMp scr = Mg scr
there. After the restoration, the screening masses rapidly approach the threshold mass and finally
21T, The threshold mass is thus an important concept to understaleghendence of screening
masses.

Finally, we predict thel dependence of pole mad . for pion and sigma-meson with
EPNJL model (Figld). At low temperatureT < Tc), the T dependence dls ;o andMg o, are
almost same in the pion and sigma-meson because Lorentz symmetry is preserved approximately.
Around T, pion and sigma-meson masses agree with each other and chiral symmetry restoration
takes place at the same temperaflyrfor pole and screening mass. These indicate that at low tem-
perature T < Tc) we can predict th& dependence d¥ls e from that ofM; s, simply. AboveTe,
however, the difference betwedy ,,e andMg s, gets larger as temperature increases. Therefore,
aboveTy, it is necessary that we should use the effective model to predict the pole mass from the
lattice QCD results of screening mass.
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Fig. 2. T dependence of pion and sigma-mes&aq. 3: T dependence of screening and pole mass in
screening masselly scr andMg scr. pion and sigma-meson.

4. Summary

We have proposed a practical way of calculating meson screening nMgsgsn the NJL-
type models. This method based on the PV regularization solves the well-known difficulty that the
evaluation ofM; ¢, is not easy in the NJL-type effective models. In the previous forma@jmn [
the vacuum and temperature cuts appear in the compidang. The contributions to the mesonic
correlation function are partially canceled in the present formalism. The branch point of the re-
sultant cut can be regarded as the threshold mass. The pion and sigma-meson screening masses
rapidly approach the threshold mas#i2; | a—o(T) after the chiral restoration. We propose the
prediction for pole mass from screening mass by using EPNJL model.
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