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One of the yet unsolved questions of QCD in the context of taedard Model is to explain the
strong CP problem. A way to look for a better understanding o to investigate the theory
in the presence of a non-zero topologifaterm. On the lattice such a term is complex: hence
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real and imaginary.
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1. Introduction

Non-perturbative effects play a fundamental role in maryeats of QCD, from the phase
diagram to spectroscopy. We know that, although allowedhbypymmetries, a term proportional to
the topological chargesy = i8Qop, Which would enhance those effects, is suppressed in peacti
The natural instrument to study the effect this topologitesin would have on physics is lattice
field theory. However, since this term is complex, it presehie usual Monte Carlo methods to
be effective and generates a sign problem. Here we will dsthe complex Langevin approach to
the problem and show some results at imaginary andaeal

2. Theory

The Lagrangian we consider, after a Wick rotation, is theal¥ang-Mills action density plus
the topologicalB-term,

. 02 .
L= gYM - qu(x)7 q(X) - 64—(7).[2F§V(X)F§V(X)7 (21)
whereq(x) is the topological charge densifyg, is the field strength tensor alﬁg‘v its Hodge dual

tensor,
1

Fﬁv =0y AS — 0VA‘?, +0 fabCA2A37 'Eﬁv = EguvpaFgg- (2.2)
The last term in the Lagrangian is a pseudo-scalar and, taumtty, a total derivative which, when
integrated over the four dimensional volume, correspoadkdtopological charge

/ d*X4(X) = Quop. 2.3)

see e.g. Ref. [1] for a review. To carry out a non-perturlgatitudy on the lattice, one needs to
discretize the theory. Although it might seem that this prhae could destroy the topology of the
configurations, it has been shown that topology emergesoalsioe lattice if the fields are smooth
enough [2]. We adopt the naive discretisation of the togoldderm [3] in Eq. (2.1),

1 +4

T 24w 302 Epvpa TrM uy (MMpe ()], (2.4)

uvpo==+1

qu(n) =

wherell,, is the ordinary plagquette and the sum is over all directioaskband forward, with
E_pvpo = —Euvpo- While this expression reproduces the correct naive coatinlimit, at finite
lattice spacing it mixes with other operators and receidebtige and multiplicative renormaliza-
tion [4—6]

qu(n) — a'Z.(g?)a(x) + O(&%). (2.5)

To be able to measure the topological content of a configurati practice, one has eliminate the
short-range quantum noise introduced by the lattice cutgfEmoothing the configuration towards
the semi-classical minima of the Yang-Mills action. Onlghinteger values of the topological
charge are recovered. This can be achieved using smeaooling; gradient flow, etc. [6-9]. In
Section 6 we will discuss the application of the gradient flancomplexified configurations in
SL(3,C).
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3. Sign problem and complex Langevin dynamics

Standard Monte Carlo numerical methods use the Boltzmaghtvef a configuration to assign
a probability weight and to reconstruct a sample represeataf the total space of configurations,
in such a way that averages of observables can be computedhisvysample. Such procedures
fail when the action is not real and positive, since it is nasyeto associate a probability to a
configuration. In the case of the theta term some possésilith get around this problem are to use
reweighting or to consider imaginafyand then analytically continue the results to r@§10-12].

Our approach is to use complex Langevin dynamics in ordebtait the desired distribution
as the asymptotic distribution of a stochastic processearctmplexified configuration space, see
Refs. [13,14] for recent reviews. The sign problem is evdgethis enlargement of the field space.
The stochastic process for links in SWU(s described by

Ut+e)=RU)U(t), RU) = exp(—i > Aa(eDaSU] + \/Ena)> , (3.1)

wheret is the additional Langevin time in which the stochastic pss takes placeg is the
Langevin time stepd, are the generators of the group, amglis stochastic gaussian noise that
obeys

(na(t,x)) =0, (Na(t,x)Nb(t',X)) = 288 (t —t')3(x—X). (3.2)

As one can see, if the acti®is complex, Eq. (3.1) takes the gauge links into the comptéarsion
of the gauge group,
U e SL(3,0C). (3.3)

The probability distribution corresponding to the comjifiex] stochastic process, formally a solu-
tion of the associateBokker-Planckequation, is positive and real even when the ac8anot. In
that sense complex Langevin dynamics evades the sign pnabid can, potentially, access e.g. the
whole temperatur@ phase diagram. While for real Langevin dynamics one carytoally prove
convergence of theokker-Planckequation to the correct distribution “a priori” [15], for egplex
Langevin such a proof relies on “a posteriori” checks oferi#t of correctness. These criteria in-
volve the distribution of observables to lmealisedin the complex direction; when satisfied then
a proof of correct convergence also exist for complex Lamgdynamic, provided that the drift is
holomorphic [16, 17]. For non-holomorphic drifts additedrcare is required [18].

4. Complex Langevin dynamics at imaginaryf

In order for complex Langevin dynamics to converge to theemresult, it is necessary to use
gauge cooling [14, 19, 20], i.e. to control the exploratidrin@ complexified configuration space.
In practice gauge cooling becomes insufficient when the gaogipling < 5.7 in the case of
pure SU(3) gauge theories. This threshold depends on teemme of fermions [21] but not on the
lattice volume or, in this case, on the value&f In fact, our way to test the efficiency of gauge
cooling, and Langevin simulations in general, is to run e procedure # = 0 or for imaginary
6; even though the action is real, the Langevin approach tililladtempt to explore the enlarged
field space and gauge cooling is essential to constrain dhisourse one could also occasionally
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Figure 1: Distribution of Qpp at imaginary8. = —20i (left) and 8. = +20i (right) on a 12 lattice at
B = 6, obtained by generating configurations using complex eaimgdynamics with gauge cooling and
subsequently applying gradient flow to recover (close t@gar charges.

re-unitarise the links but this is not possible at r@alHence it make sense to benchmark complex
Langevin and gauge cooling at imagindy

In Fig. 1 we show the result of such a test, at unrenormaleg +20i, andf3 = 6 on a
12* lattice. Here configurations are generated using complegé&an dynamics including gauge
cooling to control the process. We subsequently use grafi@nto smoothing those and recover
the topological content. We observe the expected resparibe aign oB, is flipped. We have also
made a comparison with results obtained using the standst@ &lgorithm and found agreement.

5. Complex Langevin dynamics at realf

Having verified our approach at imagina®ywe now present some results for réalWriting
the partition function as

26— / DU e SmdbQ — g Qf(a) (5.1)

whereQ is the lattice four-volume anél(6, ) the free energy density, it is straightforward to predict
the behaviour of the topological char@efor real and imaginarg, as

. dinz
—i(Q)g = — 38 = QX6 (1+ 20262+ 30467 +...), (5.2)
dinz
Qg = 58 = QxXLO (1— 20267+ 30461 +...) (5.3)
where 6 = —if_ and x_ is the (unrenormalised) topological susceptibility. Harel below6_

always denotes the unrenormalisggarameter in the action arf@ldenotes the topological charge
obtained directly from the lattice simulations, see E¢)4d.e. without smoothening of the gauge
fields. Hence the coefficienbs in the expansion are also unrenormalised.

In Fig. 2 (left) we show the dependence (@) on both imaginary and red, at § = 6.1
on a @ lattice. We observe an almost perfect linear increase, avitkeviation between the real
and imaginary lines only visible at the largér values. Independent fits to both data sets yields
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Figure 2: Left: Dependence ofQ) on the unrenormalisefi , both real and imaginary, #& = 6.1. Right:
Dependence onreél atf3 =5.8,5.9,6.1.
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Figure 3: Dependence of the linear ter@y, , on 3.

agreement with the analytical prediction, i.e. a commoedirterm and small third-order term with
opposite sign. Explicitly,

y(6) = QxL6.(142b,6?), Qx_ = 0.026, by ~107°. (5.4)

Repeating this for othgB values we find thé, dependence shown in Fig. 2 (right) and a depen-
dence of the linear coefficiefx,_ on B as in Fig. 3. As expected, the susceptibility decreases with
increasing coupling (decreasing lattice spacing or irginggtemperature).

6. Gradient flow on SL(3,C)

As specified in Sec. 2, all the topological operators on thieéaneed to be renormalised due
to short range quantum fluctuations that couple with theaipe(2.3). The non-perturbative way
to do that involves cooling the configurations towards tlalaninima of the Yang-Mills action. In
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Figure 4: Typical behaviour of the real and imaginary parts of thedattopological charg® and the action
under the gradient flow for an $8,C) configuration.

Sec. 3 we mentioned, however, that the gauge group compleyelvin dynamics takes place in is
not SU(3) but instead SB,C). The latter is a non-compact group with unstable classicattions
in the noncompact direction, and therefore it is not obviehsther cooling/smoothening will have
the same effect as in SU(3).

Since the gradient flow is just Langevin dynamics withousedi.e. “classical evolution”), it
is straightforward to implement the procedure in(8IC). We have done various tests but have not
yet gained a satisfactory understanding. A typical exangptgven in Fig. 6, where the gradient
flow evolution of the charg® and the actiors are given. We observe a plateau in the real part of
Q, but with values that average to zero in the ensemble. Thistisurprising, since the expectation
value of Q should be purely imaginary, see Eq. (5.2). However, the inzag part ofQ flows to
zero quickly (which is not surprising either). Perhapss ttonundrum reflects the fact that complex
Langevin dynamics works on the level of expectation valddsotomorphic observables and not
on the level of individual SI3,C) configurations, as manipulating those violates holomaiphi

7. Summary

We have shown that we have good control of the lattice themrg fboth real and imaginary.
The criteria for the correctness of complex Langevin dymarare satisfied fg8 > 5.8 and the ob-
servables behave in a sensible way aro@rd0. We demonstrated that the behaviour of the lattice
topological charge follows nicely the prediction based palgtic continuation from imaginarg.

As an application we studied the dependence of the (unraaiimed) topological susceptibility,
on 3. We conclude that complex Langevin dynamics correctly &ites the lattice theory, in terms
of the bare parameters and lattice operators.

The next step is to express our findings in terms of the renwewtd = Z, 6., where the
renormalisation factor can be determinedat 0. The challenge ahead is to find a way to obtain
information on renormalised topological observables ftbmLangevin dynamics in §B,C).
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