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1. Introduction

Low-lying Dirac eigenmodes are of considerable physical interestceslyein connection
with the issue of chiral symmetry breaking. In recent years, it has becleaethat the localisation
properties of the low-lying modes change across the chiral crossawle at low temperatures
all the Dirac eigenmodes are delocalised, above the chiral crossovesrammeT. the low modes
become localised on the scale of the inverse temperature; higher up in theispeabove a critical
eigenvaluei(T), modes remain delocalised also abdy¢l, 2, 3, 4, 5, 6, 7].

The coexistence of localised and delocalised modes in the same spectruneliskaawn
phenomenon in condensed matter physics, and it is the characteristiefefitbe 3D Anderson
model for “dirty” conductors [8, 9, 10]. The Hamiltonian of the Andersoadel consists of the
usual tight-binding Hamiltonian plus a random on-site potential,

Hyy = &3y + > (Oxspy+ Ox—py) » (1.1)
u

where &g provides a diagonal disorder term mimicking the presence of impurities in yiséatr
The random potential is usually chosen to be uniformly distributed in an intepa [—%, %],
with the widthW controlling the amount of disorder in the system. If a magnetic field is applied to

the system, the model is modified to

Hig = &0xy+ Y (Oxiay+ 0% ay)€%,  @x=—y, (1.2)
m

where ¢yy are random phases. This is the unitary Anderson model. The name “Urutanes
from the symmetry class to which the Hamiltonian Eq. (1.2) belongs in the randanx theory
classification. In the same classification, the model Eqg. (1.1) belongs tottiegonal class. In
both these models, for any nonzéhg there is a critical energl:(W), called “mobility edge”,
which separates localised and delocalised modes: for energies bigy,ahe energy eigenmodes
at the band edge are localised, while eigenmodes in the band center aixaidetb The transition
from localised to delocalised modes as one moves along the spectrum is econd-®rder phase
transition, known as Anderson transition.

It has been recently shown that the analogous transition in the Dirac @peairovely is also
a genuine second-order phase transition [7]. The critical exporigheaorrelation length has
been determined, and found to tagcp = 1.43(6), which is compatible with the one found in the
3D unitary Anderson modeliyam = 1.43(4) [11]. While the appearence of the unitary class is
expected, since it is the symmetry class of QCD in the language of random matiads, the fact
that a phase transition in a 4D theory seems to belong to the same universaktyasla phase
transition in a 3D model needs to be explained. The dimensionality of the systarhtise only
difference between high-temperature QCD and the Anderson model. Wliile Anderson model
disorder is diagonaland uncorrelated, in QCD it is off-diagonal, i.e., appearing in the hopping
terms, and correlated. Correlations are short-range, so they shaube melevant; on the other
hand, how off-diagonal disorder in QCD can produce the same efisalagonal disorder in the
Anderson model requires an explanation.

LAlthough in the unitary model there is also off-diagonal disorder, thisdsrto be much less effective in inducing
localisation [12].
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In this contribution we propose a mechanism for localisation in QCD, whichléstalexplain
the apparent differences between the two models. The argument consstsfinement of the
proposal of Ref. [13]. To test this mechanism, we introduce and justigffaative model (“Ising-
Anderson model”), which should produce localisation precisely througlséime mechanism. We
also show some preliminary numerical results that support the viability ofxplaration.

2. Polyakov lines and localisation

In order to better understand the relation between QCD and the Andergted, rtiee key ob-
servation is that QCD abovk is effectively a 3D model, at least as far as the qualitative features
of quark eigenfunctions are concerned. Indeed, as the size of thergmdpmension is finite and
smaller than the correlation length, the time slices are strongly correlated,ocamabsk eigen-
functions will look qualitatively the same on all time slices, in particular for whatcerns the
localisation properties.

Let us discuss this point in more detail. It is convenient to work in the tempmzmagje,
Ua(t,X) =1 fort =0,...,Nr —2 andVX, in whichUs(Nr — 1,X) equals the local Polyakov line
P(X) = |‘|{\':T0’1U4(t,2). A further time-independent gauge transformation allows to diagonalise
each local Polyakov line: we will refer to this as the diagonal temporal gjadig any tempo-
ral gauge, covariant time differences are replaced by ordinaryrelifées; the price to pay is that
the antiperiodic boundary conditions become effectirdependent boundary conditions, which
involve the local Polyakov line,

W(Nr,X) = =P(X)Y(0,%). (2.1)

Since the time slices are strongly correlated, these effedtislependent boundary conditions will
affect the behaviour at the spatial poifor all timest. FurthermoreP(X) fluctuates in space (and
obviously from one configuration to another). From the point of viewdisardered system, QCD
aboveT, therefore contains effectively a diagonal (on-site), 3D source ofdés.

To see how the effective boundary conditions affect the quark wanetibns, let us first
discuss a simplified setting in which the Dirac equation can be explicitly solveergksing the
argument of Ref. [13] t&U(3). Consider configurations with constant temporal libksand trivial
spatial linksU; = 1. In the diagonal temporal gauge, one Pés) = P = diag(€%:, €92, &%) with
¢3 = —¢1— ¢, so the Dirac operator is diagonal in colour, and the colour compongms$ the
quark eigenfunctions decouple. The eigenfunctions of the Dirac pexee plane waves,

B =iAg, G(t,X) OeNTPX A =4, /sirPa+ 33 sinpy, (2.2)
with %ij =0,1,...,L—1 to fulfill the spatial periodic boundary conditions, and
= § (M+¢x  mod 2m) =aT(m+ ¢« mod 21), (2.3)

to fulfill the effective temporal boundary conditions. We will referipas the effective Matsubara
frequencies. For a given value of the phageNy /2 (twofold degenerate) different branchesdar
appear, corresponding to increasing values .oFor the lowest brancluy decreases ag moves
away from zero, and it is minimal whefx = —1.
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Let us now consider the general case. Ab@yen a typical gauge configuration the Polyakov
line P(X) gets ordered alon@ = diag(1,1,1) with “islands” of “wrong” P(X) # 1. If it were
completely ordered, there would be a sharp gap in the spectrurg -atw(0) = maT (and a
symmetric one at-Ag), but fluctuations (both oP(x) and of the spatial links) smoothen it out.
In particular, living on the “islands” of “wrongP(X) is “energetically” favourable for the quark
eigenfunctions, yieldingA | < Ag as long as the momentum required to localise the state does not
overbalance the gain. The gap becomes therefore an effectivk.gaentified as the “mobility
edge” separating localised and delocalised modes. This effective gaqhisrinore displaced by
the presence of spatial fluctuations, which most likely have a delocalidixf eh the eigenmodes,
thus pushing the effective gap down.

In summary, the presence of “islands” of “wrong” Polyakov lines presid localising “trap”
for eigenmodes. At fixed lattice spacing, we expkgto increase as the temperature is increased,
being “dragged” by the effective Matsubara frequency.

3. Effective 3D model

The considerations above suggest that it should be possible to umdietfs¢aqualitative fea-
tures of the Dirac spectrum and eigenfunctions in QCD, in particular enimgespectral statistics
and localisation properties, by using a genuinely 3D model. To constrahtasmodel, one has
to strip off all the features that are irrelevant to localisation. The firstistépget rid of the time
direction, reducing the lattice to three dimensions, and replacing the time cuvdervative in
the Dirac operator with a diagonal noise term, intended to mimic the effectivedaoyiconditions.
Moreover, it is known that off-diagonal disorder is less effectivattigonal disorder in produc-
ing localisation [12], so we can replace spatial covariant derivativéssardinary derivatives. As
a consequence, colour components decouple: this changes the symastifjircthe sense of ran-
dom matrix models), but should not affect the presence of localisatiogornlusion, the main
features of localisation should still be captured if we replace the 4D lattice v3ib lattice, and
the Dirac operator with the effective “Hamiltonian”

iByy = iV (Da)xy+iy-Dxy — Hyy = Y NxOxg+iY- day, (3.2)

where 44 is the diagonal noise, to be specified later. This Hamiltonian is diagonal inr¢colou
and so has effectively only spacetime and Dirac indices; for lattices of gpatial size, a spin
diagonalisation allows to get rid of the latter.

At this point we should specify the diagonal noigg intended to mimic the effective boundary
conditions, which has therefore to satisfy a few requirements:

1. it should not be uncorrelated, but rather be governed by Polyalopvlike dynamics. This
suggests to base it on some spin model in the ordered phase;

2. as itis the phase &f(X) which enters the effective boundary conditions, which is a continu-
ous variable, we have to use continuous spins;

3. finally, .44 should produce an effective gap in the spectrum.
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Figure 1: Spectral density of the effective model Eq. (3.3).

For our purposes it is enough to have a continuous spin model which yismteordered phase,
and the simplest choice is the Ising model with continuous spin. A possible dlooitee noise

termis
1+ 5

J/X:ATa K€ [_171]7 (32)

wheres; is the spin variable at poit andA is a constant determining the strength of the coupling
of the fermions to the spins. Sinééﬁ is 1 for “aligned” spins (i.e., fosy = 1), this choice provides
indeed an effective spectral gap when the spins are ordered.

Putting everything together, our effective model reads

with s; distributed according to the dynamics of the Ising model,
Hisi
T = _Blsing<;y> ss, see[-11]. (3.4)

In the ordered phase of the Ising model there is a “sea; ef 1 spins with “islands” ofsy # 1
spins, so the underlying configurations have the same features as th&d®diyop configurations
in QCD. While in QCD we have a single parameter governing the ordering afahfiguration
and the size of the effective gap, in the effective model the orderingeo$pim configuration is
governed byBising, While the size of the gap is mainly determined by the spin-fermion couging

A curious feature of this model is that it belongs to different symmetry ctafegdattices of
even or odd sizé, namely to the orthogonal class floeven, and to the symplectic class foodd.
As we have already said above, it is more convenient to work with evexd-&ittices, since one
can get rid of the Dirac indices through a spin diagonalisation. Studying ¢tiaédation properties
of this model would provide a test for the viability of the sea/islands explanation

4. Numerical results

We have performed numerical simulations of the effective model Eq. (3.3hedium-size
lattices = 16 andL = 20), performing full diagonalisation of the Hamiltonian, for two different
temperatures /Bising Of the Ising system in the ordered phase, and for two choices of the spin-
fermion coupling/\.

2|t is understood that we work with magnetic figld= 0"
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Figure 2: Participation ratio of eigenmodes of the effective model BR).

In Fig. 1 we show the spectral density per unit volume of the system. Low sroales smalll
spectral density, which rapidly increases as one goes up in the speasuxpected. Decreasing
the temperature, thus making the system more ordered, decreases theadénw modes, as one
expects if these modes are localised. Increasing the spin-fermion coepliagyens the region
where the spectral density is small, again as expected, since it shoultheusffiective gap up in
the spectrum. Notice the symmetry under— —A of the spectrum, which can be proved to be
a property of the average spectrum, but which does not hold coriiguiay configuration as it
does in QCD with staggered fermions. There is apparently also a shanp ti@pspectrum, which
is however essentially insensitive Ao It is not clear if this is due to the use of not large enough
volumes or if it is indeed a feature of the effective model, possibly due toliberae of disorder
in the hopping terms; in any case, it is irrelevant for our purposes.

In Fig. 2 we show the average participation ré&®R= (¥, |¢(x)|*)~1/V, which gives a mea-
sure of the fraction of space occupied by a given mode, as a functitslo¢ation in the spectrum.
ThePRchanges by two orders of magnitude as one moves up in the spectrum dtartirtge low-
density region; more importantly, when increasing the size of the system iinealenost constant
in the bulk of the spectrum, while it visibly decreases near the origin. Thiskidghat modes in
the bulk are delocalised, while modes near the origin are localised.

Finally, in Fig. 3 we show a suitably defined local spectral statisficacross the spectrum.
Spectral statistics can be used to detect a localisation/delocalisation trarsit@the eigenval-
ues corresponding to localised or delocalised eigenmodes are expeotey/tdifferent statistics,
namely Poisson or Wigner-Dyson statistics, respectively. More precigefydefined as

5 A1 — A
| :/ ds S), -:L7
A o S S (Ait1— A

where p, (s) is the probability distribution, computed locally in the spectrum, of the so-called

5~0.5, (4.1)
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Figure 3: The spectral statistidg, Eq. (4.1), in the effective model Eq. (3.3).

unfolded level spacing, i.e., the level spacing divided by the local average level spa@ding —
Ai)x. The results confirm that the eigenmodes change from localised to dedacaltsen one
moves up in the spectrum, and that the “mobility edge” separating localisecetowhtised modes
goes up in the spectrum when the Ising system is made more ordered bgslagrthe temperature,
or when the spin-fermion coupling is increased. Furthermore, they fgeeadirst indication that
the steepness of the curve increases as the volume is increased, thugdtititi@ existence of a
true phase transition in the spectrum.

5. Conclusions

We have proposed a possible mechanism to explain localisation of quarkreides in QCD
aboveT.. The mechanism is based on the “trapping” effect of spatial fluctuatibriseolocal
Polyakov line on the eigenmodes in the background of a partially orderegegaonfiguration. To
test the explanation, we have constructed an effective 3D model whatlidshapture the main
features of localisation. Preliminary numerical results support the viabilibwoExplanation.
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