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Above the QCD chiral crossover temperature, the low-lying eigenmodes of the Dirac opera-

tor are localised, while moving up in the spectrum states become extended. This localisa-

tion/delocalisation transition has been shown to be a genuine second-order phase transition, in

the same universality class as that of the 3D Anderson model.The existence of localised modes

and the effective dimensional reduction can be tentativelyexplained as a consequence of local

fluctuations of the Polyakov loop, that provide 3D on-site disorder, in analogy to the on-site dis-

order of the Anderson model. To test the viability of this explanation we study a 3D effective,

Anderson-like model, with on-site disorder provided by thespins of a spin model, which mimics

the Polyakov loop dynamics. Our preliminary results show that localised modes are present in the

ordered phase, thus supporting the proposed mechanism for localisation in QCD.
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1. Introduction

Low-lying Dirac eigenmodes are of considerable physical interest, especially in connection
with the issue of chiral symmetry breaking. In recent years, it has becomeclear that the localisation
properties of the low-lying modes change across the chiral crossover:while at low temperatures
all the Dirac eigenmodes are delocalised, above the chiral crossover temperatureTc the low modes
become localised on the scale of the inverse temperature; higher up in the spectrum, above a critical
eigenvalueλc(T), modes remain delocalised also aboveTc [1, 2, 3, 4, 5, 6, 7].

The coexistence of localised and delocalised modes in the same spectrum is a well known
phenomenon in condensed matter physics, and it is the characteristic feature of the 3D Anderson
model for “dirty” conductors [8, 9, 10]. The Hamiltonian of the Andersonmodel consists of the
usual tight-binding Hamiltonian plus a random on-site potential,

H~x~y = ε~xδ~x~y+∑
µ
(δ~x+µ̂~y+δ~x−µ̂~y) , (1.1)

whereε~x provides a diagonal disorder term mimicking the presence of impurities in the crystal.
The random potential is usually chosen to be uniformly distributed in an interval ε~x ∈

[

−W
2 ,

W
2

]

,
with the widthW controlling the amount of disorder in the system. If a magnetic field is applied to
the system, the model is modified to

H~x~y = ε~xδ~x~y+∑
µ
(δ~x+µ̂~y+δ~x−µ̂~y)e

iφ~x~y , φ~y~x =−φ~x~y , (1.2)

whereφ~x~y are random phases. This is the unitary Anderson model. The name “unitary” comes
from the symmetry class to which the Hamiltonian Eq. (1.2) belongs in the random matrix theory
classification. In the same classification, the model Eq. (1.1) belongs to the orthogonal class. In
both these models, for any nonzeroW, there is a critical energyEc(W), called “mobility edge”,
which separates localised and delocalised modes: for energies beyondEc, the energy eigenmodes
at the band edge are localised, while eigenmodes in the band center are delocalised. The transition
from localised to delocalised modes as one moves along the spectrum is a true second-order phase
transition, known as Anderson transition.

It has been recently shown that the analogous transition in the Dirac spectrum aboveTc is also
a genuine second-order phase transition [7]. The critical exponent of the correlation length has
been determined, and found to beνQCD = 1.43(6), which is compatible with the one found in the
3D unitary Anderson model,νUAM = 1.43(4) [11]. While the appearence of the unitary class is
expected, since it is the symmetry class of QCD in the language of random matrixmodels, the fact
that a phase transition in a 4D theory seems to belong to the same universality class as a phase
transition in a 3D model needs to be explained. The dimensionality of the system isnot the only
difference between high-temperature QCD and the Anderson model. While inthe Anderson model
disorder is diagonal1 and uncorrelated, in QCD it is off-diagonal, i.e., appearing in the hopping
terms, and correlated. Correlations are short-range, so they should not be relevant; on the other
hand, how off-diagonal disorder in QCD can produce the same effectsas diagonal disorder in the
Anderson model requires an explanation.

1Although in the unitary model there is also off-diagonal disorder, this is known to be much less effective in inducing
localisation [12].
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In this contribution we propose a mechanism for localisation in QCD, which is able to explain
the apparent differences between the two models. The argument consistsin a refinement of the
proposal of Ref. [13]. To test this mechanism, we introduce and justify aneffective model (“Ising-
Anderson model”), which should produce localisation precisely through this same mechanism. We
also show some preliminary numerical results that support the viability of our explanation.

2. Polyakov lines and localisation

In order to better understand the relation between QCD and the Anderson model, the key ob-
servation is that QCD aboveTc is effectively a 3D model, at least as far as the qualitative features
of quark eigenfunctions are concerned. Indeed, as the size of the temporal dimension is finite and
smaller than the correlation length, the time slices are strongly correlated, and so quark eigen-
functions will look qualitatively the same on all time slices, in particular for what concerns the
localisation properties.

Let us discuss this point in more detail. It is convenient to work in the temporalgauge,
U4(t,~x) = 1 for t = 0, . . . ,NT − 2 and∀~x, in whichU4(NT − 1,~x) equals the local Polyakov line
P(~x) = ∏NT−1

t=0 U4(t,~x). A further time-independent gauge transformation allows to diagonalise
each local Polyakov line: we will refer to this as the diagonal temporal gauge. In any tempo-
ral gauge, covariant time differences are replaced by ordinary differences; the price to pay is that
the antiperiodic boundary conditions become effective,~x-dependent boundary conditions, which
involve the local Polyakov line,

ψ(NT ,~x) =−P(~x)ψ(0,~x) . (2.1)

Since the time slices are strongly correlated, these effective,~x-dependent boundary conditions will
affect the behaviour at the spatial point~x for all timest. Furthermore,P(~x) fluctuates in space (and
obviously from one configuration to another). From the point of view of adisordered system, QCD
aboveTc therefore contains effectively a diagonal (on-site), 3D source of disorder.

To see how the effective boundary conditions affect the quark wave functions, let us first
discuss a simplified setting in which the Dirac equation can be explicitly solved, generalising the
argument of Ref. [13] toSU(3). Consider configurations with constant temporal linksU4 and trivial
spatial linksU j = 1. In the diagonal temporal gauge, one hasP(x) = P= diag(eiϕ1,eiϕ2,eiϕ3) with
ϕ3 = −ϕ1−ϕ2, so the Dirac operator is diagonal in colour, and the colour componentsψk of the
quark eigenfunctions decouple. The eigenfunctions of the Dirac operator are plane waves,

/Dψk = iλψk , ψk(t,~x) ∝ eiωkt+i~p·~x , λ =±
√

sin2 ωk+∑3
j=1sin2 p j , (2.2)

with L
2π p j = 0,1, . . . ,L−1 to fulfill the spatial periodic boundary conditions, and

ωk =
1

NT
(π +ϕk mod 2π) = aT(π +ϕk mod 2π) , (2.3)

to fulfill the effective temporal boundary conditions. We will refer toωk as the effective Matsubara
frequencies. For a given value of the phaseϕk, NT/2 (twofold degenerate) different branches forωk

appear, corresponding to increasing values ofλ . For the lowest branch,ωk decreases asϕk moves
away from zero, and it is minimal wheneiϕk =−1.
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Let us now consider the general case. AboveTc, in a typical gauge configuration the Polyakov
line P(~x) gets ordered along1 = diag(1,1,1) with “islands” of “wrong” P(~x) 6= 1. If it were
completely ordered, there would be a sharp gap in the spectrum atλg = ωk(0) = πaT (and a
symmetric one at−λg), but fluctuations (both ofP(x) and of the spatial links) smoothen it out.
In particular, living on the “islands” of “wrong”P(~x) is “energetically” favourable for the quark
eigenfunctions, yielding|λ | < λg as long as the momentum required to localise the state does not
overbalance the gain. The gap becomes therefore an effective gapλc, identified as the “mobility
edge” separating localised and delocalised modes. This effective gap is furthermore displaced by
the presence of spatial fluctuations, which most likely have a delocalising effect on the eigenmodes,
thus pushing the effective gap down.

In summary, the presence of “islands” of “wrong” Polyakov lines provides a localising “trap”
for eigenmodes. At fixed lattice spacing, we expectλc to increase as the temperature is increased,
being “dragged” by the effective Matsubara frequency.

3. Effective 3D model

The considerations above suggest that it should be possible to understand the qualitative fea-
tures of the Dirac spectrum and eigenfunctions in QCD, in particular concerning spectral statistics
and localisation properties, by using a genuinely 3D model. To construct such a model, one has
to strip off all the features that are irrelevant to localisation. The first stepis to get rid of the time
direction, reducing the lattice to three dimensions, and replacing the time covariant derivative in
the Dirac operator with a diagonal noise term, intended to mimic the effective boundary conditions.
Moreover, it is known that off-diagonal disorder is less effective than diagonal disorder in produc-
ing localisation [12], so we can replace spatial covariant derivatives with ordinary derivatives. As
a consequence, colour components decouple: this changes the symmetry class (in the sense of ran-
dom matrix models), but should not affect the presence of localisation. Inconclusion, the main
features of localisation should still be captured if we replace the 4D lattice with a3D lattice, and
the Dirac operator with the effective “Hamiltonian”

i /Dxy = iγ4(D4)xy+ i~γ ·~Dxy −→ H~x~y = γ4
N~xδ~x~y+i~γ ·~∂~x~y , (3.1)

whereN~x is the diagonal noise, to be specified later. This Hamiltonian is diagonal in colour,
and so has effectively only spacetime and Dirac indices; for lattices of even spatial size, a spin
diagonalisation allows to get rid of the latter.

At this point we should specify the diagonal noiseNx intended to mimic the effective boundary
conditions, which has therefore to satisfy a few requirements:

1. it should not be uncorrelated, but rather be governed by Polyakov-loop-like dynamics. This
suggests to base it on some spin model in the ordered phase;

2. as it is the phase ofP(~x) which enters the effective boundary conditions, which is a continu-
ous variable, we have to use continuous spins;

3. finally,N~x should produce an effective gap in the spectrum.
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Figure 1: Spectral density of the effective model Eq. (3.3).

For our purposes it is enough to have a continuous spin model which displays an ordered phase,
and the simplest choice is the Ising model with continuous spin. A possible choicefor the noise
term is

N~x = Λ
1+s~x

2
, s~x ∈ [−1,1] , (3.2)

wheres~x is the spin variable at point~x, andΛ is a constant determining the strength of the coupling
of the fermions to the spins. Since1+s~x

2 is 1 for “aligned” spins (i.e., fors~x = 1), this choice provides
indeed an effective spectral gap when the spins are ordered.2

Putting everything together, our effective model reads

H~x~y = γ4Λ1+s~x
2 δ~x~y+ i~γ ·~∂~x~y , (3.3)

with s~x distributed according to the dynamics of the Ising model,

HIsing

kT
=−βIsing ∑

<~x~y>

s~xs~y , s~x ∈ [−1,1] . (3.4)

In the ordered phase of the Ising model there is a “sea” ofs~x = 1 spins with “islands” ofs~x 6= 1
spins, so the underlying configurations have the same features as the Polyakov loop configurations
in QCD. While in QCD we have a single parameter governing the ordering of theconfiguration
and the size of the effective gap, in the effective model the ordering of the spin configuration is
governed byβIsing, while the size of the gap is mainly determined by the spin-fermion couplingΛ.

A curious feature of this model is that it belongs to different symmetry classes for lattices of
even or odd sizeL, namely to the orthogonal class forL even, and to the symplectic class forL odd.
As we have already said above, it is more convenient to work with even-sized lattices, since one
can get rid of the Dirac indices through a spin diagonalisation. Studying the localisation properties
of this model would provide a test for the viability of the sea/islands explanation.

4. Numerical results

We have performed numerical simulations of the effective model Eq. (3.3) on medium-size
lattices (L = 16 andL = 20), performing full diagonalisation of the Hamiltonian, for two different
temperatures 1/βIsing of the Ising system in the ordered phase, and for two choices of the spin-
fermion couplingΛ.

2It is understood that we work with magnetic fieldh= 0+.
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Figure 2: Participation ratio of eigenmodes of the effective model Eq. (3.3).

In Fig. 1 we show the spectral density per unit volume of the system. Low modes have small
spectral density, which rapidly increases as one goes up in the spectrum,as expected. Decreasing
the temperature, thus making the system more ordered, decreases the density of low modes, as one
expects if these modes are localised. Increasing the spin-fermion couplingenlargens the region
where the spectral density is small, again as expected, since it should pushthe effective gap up in
the spectrum. Notice the symmetry underλ → −λ of the spectrum, which can be proved to be
a property of the average spectrum, but which does not hold configuration by configuration as it
does in QCD with staggered fermions. There is apparently also a sharp gapin the spectrum, which
is however essentially insensitive toΛ. It is not clear if this is due to the use of not large enough
volumes or if it is indeed a feature of the effective model, possibly due to the absence of disorder
in the hopping terms; in any case, it is irrelevant for our purposes.

In Fig. 2 we show the average participation ratioPR= (∑x |ψ(x)|4)−1/V, which gives a mea-
sure of the fraction of space occupied by a given mode, as a function ofits location in the spectrum.
ThePRchanges by two orders of magnitude as one moves up in the spectrum startingfrom the low-
density region; more importantly, when increasing the size of the system it remains almost constant
in the bulk of the spectrum, while it visibly decreases near the origin. This signals that modes in
the bulk are delocalised, while modes near the origin are localised.

Finally, in Fig. 3 we show a suitably defined local spectral statisticsIλ across the spectrum.
Spectral statistics can be used to detect a localisation/delocalisation transition,since the eigenval-
ues corresponding to localised or delocalised eigenmodes are expected toobey different statistics,
namely Poisson or Wigner-Dyson statistics, respectively. More precisely, Iλ is defined as

Iλ =
∫ s̄

0
ds pλ (s) , si =

λi+1−λi

〈λi+1−λi〉λ
, s̄≃ 0.5, (4.1)

where pλ (s) is the probability distribution, computed locally in the spectrum, of the so-called

6
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Figure 3: The spectral statisticsIλ , Eq. (4.1), in the effective model Eq. (3.3).

unfolded level spacingsi , i.e., the level spacing divided by the local average level spacing〈λi+1−

λi〉λ . The results confirm that the eigenmodes change from localised to delocalised when one
moves up in the spectrum, and that the “mobility edge” separating localised and delocalised modes
goes up in the spectrum when the Ising system is made more ordered by decreasing the temperature,
or when the spin-fermion coupling is increased. Furthermore, they give also a first indication that
the steepness of the curve increases as the volume is increased, thus hinting at the existence of a
true phase transition in the spectrum.

5. Conclusions

We have proposed a possible mechanism to explain localisation of quark eigenmodes in QCD
aboveTc. The mechanism is based on the “trapping” effect of spatial fluctuations of the local
Polyakov line on the eigenmodes in the background of a partially ordered gauge configuration. To
test the explanation, we have constructed an effective 3D model which should capture the main
features of localisation. Preliminary numerical results support the viability ofour explanation.
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