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At low temperature the low-lying QCD Dirac spectrum obeys random matrix statistics. Recently
we found that above T, the lowest part of the spectrum consists of localized modes that obey
Poisson statistics. An interesting implication of this is that as the system crosses 7, from above,
the spectral statistics at A = 0 changes from Poisson to random matrix. Here we study this

transition and its possible implications for the finite temperature transition of QCD-like theories.
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1. Introduction

It is well known that at low temperature the low-lying eigenmodes of the QCD Dirac oper-
ator are delocalized, and their statistics can be described by random matrix theory [1, 2]. This
fact is utilized also in practice: low energy constants of chiral perturbation theory can be deter-
mined by comparing lattice data and random matrix predictions. Recently it was found that the
high-temperature Dirac spectrum is more “complex” than the low temperature one [3—6]. This
means that the eigenmodes of the Dirac operator are either localized or delocalized depending on
where they are located in the spectrum. The low end of the spectrum consists of localized, statis-
tically uncorrelated eigenmodes, while modes in the bulk still remain delocalized and statistically
correlated. The QCD Dirac operator is not the only physical system having such a “complex” spec-
trum. In solid state physics, the Hamiltonian of the Anderson model provides an example of this
kind of spectrum. The Anderson model is the simplest model for Anderson localization [7]. The
one-electron Hamiltonian of the Anderson model describes non-interacting electrons and has the
form

H=Y &li)i|+ ) [i){jl, (1.1)
i (i,J)

where i represents an atomic orbital on a lattice site. The first term in eq. (1.1) represents an
on-site interaction with randomly distributed site energies €. The second term is responsible for
nearest-neighbor hopping with constant coupling strength. In the case when the disorder is zero,
i.e., the variance o (&;) of the random on-site energies is zero, the eigenfunctions of H are the well-
known, delocalized Bloch wavefunctions. If the disorder is turned on then localized eigenmodes
will appear around the spectrum edges, while states near the band center remain delocalized, and
there will be a boundary between the localized and delocalized modes in both the positive and
negative part of the spectrum called mobility edge. If the disorder increases the mobility edges
move further towards the band center, and eventually at a critical disorder strength all eigenmodes
of H will be localized. This transition is known as the Anderson transition.

The Anderson transition in solid-state physics is a real second order phase transition [8]. Some
of us found that the finite volume crossover in the high-temperature Dirac spectrum from local-
ized eigenmodes to delocalized eigenmodes also becomes a genuine second-order phase transi-
tion in the thermodynamic limit [9]. In the same work we also determined the critical exponent
Vocp = 1.43(6) which is consistent with the one found in the three dimensional unitary Anderson
model 4,y = 1.43(4) [10]. A possible explanation for this consistency, and a more detailed de-
scription of the similarities of the spectra of the Anderson model and of the QCD Dirac operator
can be found in [11]. In the Anderson model the control parameter which drives the transition
is the disorder strength o (g;). On the other hand, the transition can be also examined at fixed
disorder strength by scanning the spectrum. Physically, this approach arises more naturally, since
one can control the position of the Fermi energy by changing the chemical potential and examine
the transition as the Fermi energy crosses the mobility edge. Unfortunately, in QCD (as far as we
know) there is no physical control parameter which enables us to change the position in the Dirac
spectrum. In fact, the mobility edge is only a point in the spectrum, while all local thermodynam-
ical quantities (for example the quark condensate (Yy)) are obtained by integrating over the full
spectrum. Nevertheless, the presence of localized low-lying modes might affect these observables.
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Figure 1: Phase diagram of QCD in the eigenvalue-temperature plane.

In lattice QCD the control parameter is the temperature, which plays a similar role to the
disorder strength o (&;) in the Anderson model. In this paper we analyze the localization properties
of low-lying modes as the temperature is varied, both in QCD and in a QCD-related toy model
displaying a true first order phase transition. We also study the relation between the appearance
of localized modes and the presence of a dramatic change in the thermodynamic properties of the
system.

2. Phase diagram of QCD

To analyze the temperature dependence of the mobility edge, A, the appropriate quantity
to consider is its ratio to the bare quark mass. Since A, acts effectively as a bare quark mass, it is
expected to renormalize similarly, so that A, /m,,, is renormalization group invariant. A more formal
argument can be found in [6]. In Fig. | we show the phase diagram of QCD in the (A,T) plane. To
a good precision, at high temperature, well above the pseudo-critical QCD transition temperature
T, the mobility edge depends linearly on the temperature. There is a critical line in the phase
diagram along which there is a second order phase transition in the spectrum. If we extrapolate this
critical line to vanishing mobility edge, we get a temperature consistent with the pseudo-critical
QCD crossover temperature. However, the relationship between the Anderson transition and the
QCD chiral crossover is not straightforward, because in the latter case there is no unique transition
temperature. In order to investigate the relationship between the chiral transition and the Anderson
transition in a clear-cut setting we will consider a simple model which shows a real first order
phase transition in the thermodynamic limit. In fact our work has also practical motivations and
might suggest new order parameters for locating the chiral transition. Usually, the chiral transition
is analyzed by comparing the value of the quark condensate at different temperatures. A priori,
calculating the bare quark condensate at just one temperature will not tell us to which phase the
ensemble of configurations belongs. In this work our aim is also to look for quantities that can be
easily computed (without any renormalization or zero temperature simulation) and can be used to
identify the phase to which the ensemble of configurations belongs.
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Figure 2: Spectral density (normalized by the lattice volume) of our toy model for different values of 8 on
a log-log scale.

3. A toy model: three flavors of unimproved staggered quarks on N; = 4 lattices

In order to investigate the relationship between the chiral transition and the Anderson transition
in the spectrum we simulate Ny = 3 unimproved staggered quarks with the Wilson plaquette action.
At N; = 4 this toy model has a real first order phase transition in the thermodynamic limit for
sufficiently small quark masses [12]. In our case we use nip,. = 0.01. To check the finite volume
effects we use three different lattice volumes: 243,323 483. Since N; is fixed we use the B gauge
coupling to change the temperature. Although, from the point of view of QCD, this first order phase
transition is a coarse lattice artifact, our toy model is nevertheless a legitimate statistical physics
model, which allows to compare, in a clear-cut setting, the temperature at which a genuine phase
transition occurs, and the temperature at which localized modes appear in the Dirac spectrum.

4. Numerical results

Let us first check how the spectral density changes when the first order transition happens,
and then to examine how the spectral statistics change along the spectrum at temperatures which
definitely belong to the “chirally symmetric” phase. Establishing the transition in the spectrum in
the “chirally symmetric” phase we define a mobility edge and map out the phase diagram of our
toy model in the (A, ) plane.

The usual way to examine a chiral transition is to study the temperature dependence of the
quark condensate. The latter can be expressed in terms of the spectral density of the lattice Dirac
operator with the help of the Banks-Casher formula [13] as follows,

2m

Wy ) = [ dhggrp (1), @1

A sizeable contribution to the integral comes from the low modes of the Dirac operator, so a large
change in the spectral density around zero will reflect in a large change of the condensate. In Fig. 2
we show how the spectral density near zero changes as 3 is varied and the system is driven through
the chiral phase transition. Below 8 = 5.099 the spectral density near the origin is essentially
constant in A, which leads to a large contribution to the chiral condensate, and changes only slightly
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Figure 3: Poisson-RMT transition in high-temperature Dirac spectra for two different temperatures.

with B. Above B = 5.099 the spectral density vanishes continuously as a power law approaching
the origin, so the contribution of the low modes to the condensate drops considerably. As a matter
of fact, the chiral condensate has a jump around 8 = 5.099 (see Fig. 4), so that the two different
behaviors of p near the origin correspond to the two phases of the system.

The presence of localized modes in the spectrum can be conveniently detected by analyzing the
spectral statistics. Localized modes usually appear in a region of low spectral density, and so they
are unlikely to be mixed by the gauge field fluctuations, as they have large eigenvalue differences
and small eigenmode overlaps. They are therefore expected to be statistically independent, and the
corresponding eigenvalues should follow Poisson statistics. On the other hand, when the spectral
density is large the fluctuations can easily mix the modes, leading to delocalised and correlated
eigenmodes, with eigenvalues distributed according to random matrix theory.

In order to determine what kind of statistics the eigenvalues obey, it is easier to work with the
so-called unfolded spectrum, obtained by properly rescaling the eigenvalues to have unit spectral
density throughout the spectrum. In practice, this is done by replacing each eigenvalue with its
rank in the full sequence of eigenvalues. A commonly used spectral statistics is the so-called
unfolded level spacing distribution (ULSD) p (s). In the case of uncorrelated eigenvalues the ULSD
is an exponential distribution: ppyisson (s) = exp (—s), and in the case of correlated eigenvalues the
ULSD can be well approximated by the so-called Wigner surmise of the corresponding random
32 s?exp (—2s?). First we check whether the low modes of the high-
temperature Dirac spectrum are also statistically independent in our toy model. To show this we

matrix ensemble pryr () =

choose some parameter of the U LSD, compute it locally in the spectrum and monitor how it changes
between the two limiting cases. We choose the integral of the ULSD up to the point where the
exponential and the Wigner surmise first cross (approximately):

0.5
Ios = A ds p(s). (4.2)

In Fig. 3 we show how this statistic changes locally in the spectrum for two different temperatures.
For both temperatures we see qualitatively the same behavior: moving from the edge towards
the bulk of the spectrum the spectral statistics changes from Poisson to random matrix. For each
temperature we show the continuous transition in the spectrum for three different lattice volumes.
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Figure 4: The phase diagram of our toy model in the (A, ) plane. We show the mobility edge with filled
circles and the value of (yy) with filled squares. The smooth line represents the critical line in the (A, f3)
plane. The vertical dotted line corresponds to 8. = 5.099 where the (extrapolated) mobility edge vanishes.

It is clear that the transition becomes sharper on larger volumes, suggesting a singular behavior in
the thermodynamic limit. For the QCD Dirac spectrum we showed that this transition is a second
order phase transition. Most likely this is the case for our toy model too, since around the critical
point in the spectrum (the mobility edge), where I 5 is volume independent, this quantity takes the
same value as in QCD, Iys(A.) = 0.187 [14], both for B = 5.120 and 5.130. We also see from
Fig. 3 that the mobility edge decreases as the temperature decreases. In the following we examine
how this mobility edge goes to zero as a function of the temperature and how this correlates with
the location of the first order chiral phase transition.

5. Phase diagram of the toy model

For any value of f3, the mobility edge can be identified as the point in the spectrum where
local spectral statistics are volume-independent in the large-volume limit. With decreasing f3 the
mobility edge goes towards the spectrum edge and we need larger and larger volumes to capture
the volume dependence of the transition. At large lattice volume, however, we can determine the
mobility edge using simulations at a single volume only. We identify the mobility edge with the
location in the spectrum where the spectral statistics takes its critical value i.e. Iys(A) = 0.187.
In Fig. 4 we show how the mobility edge changes as a function of the temperature. In the same
figure we also show a second-order polynomial fit to the data points. The fit can be used to read
off the critical B, where the mobility edge becomes zero. In the same figure we also show how
(Py) changes as a function of . We calculated (yy) with the stochastic method. This quantity,
being the first derivative of the partition function, exhibits a discontinuity at a real first order phase
transition. Our most important result is that the mobility edge becomes zero around the point
B: =5.099, where the value of the (yy) jumps. This means that the localized modes appear at the
temperature where the chiral transition occurs.
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6. Conclusions and outlook

The question whether the effect of the chiral crossover in QCD can be seen also in terms of
localization of the eigenmodes of the Dirac operator is a rather old one [3]. At that time high statis-
tics simulations with physical quark masses were unfeasible. In QCD with physical quark masses
we found that the Anderson transition in the Dirac spectrum starts to appear around 163 MeV [15],
which is consistent with the pseudo-critical QCD transition temperature determined from other
quantities [16]. In this paper we deal with a model in which there is a real first order phase tran-
sition in the thermodynamic limit. Our main result is that in this model the chiral transition and
the Anderson transition occur at the same temperature. The next step would be to understand if
and how the Anderson transition can possibly explain the chiral transition. To this extent, it would
be interesting to extrapolate the spectral statistics to A = 0 at a given value of 3 at a fixed lattice
volume V and then do a finite-size scaling analysis. However, to get a reliable extrapolation to
A = 0 around 3. we need even larger volumes. Another interesting possibility is to study the statis-
tical behavior of the first and the second eigenvalue of the lattice Dirac operator. For that aspect the
overlap Dirac operator would be much better, since it does not suffer from taste-symmetry breaking
of staggered fermions.
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