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1. Introduction

Any attempt to simulate QCD at finite chemical potential µ must somehow deal with the
sign problem, i.e. the fact that at µ > 0 the fermion determinant is complex, and straightforward
importance sampling is impossible. Our approach to this problem is to first map the gauge theory
into a theory with many fewer degrees of freedom, namely, a Polyakov line or “SU(3) spin” model,
by a method we refer to as “relative weights” [1]. We will then deal with the sign problem in two
different ways: first using the complex Langevin equation, following the method of [2], and also
by a mean field approach, as discussed in [3]. We will find that these methods sometimes agree
perfectly, and sometimes not. I will discuss who is right − or who is wrong − in the latter case.

2. The Relative Weights Method

Start with lattice gauge theory and integrate out all d.o.f. subject to the constraint that the
Polyakov line holonomies are held fixed. This defines the Polyakov line action (PLA) SP. In
temporal gauge

eSP[Ux] =
∫

DU0(x,0)DUkDφ

{
∏

x
δ [Ux−U0(x,0)]

}
eSL (2.1)

where φ denotes any matter fields, bosonic or fermionic, in the lattice action SL. We will avoid
dynamical fermion simulations for now, and work instead with an SU(3) gauge-Higgs model with
a fixed modulus (ΩΩ† = 1) Higgs field

SL =
β

3 ∑
p

ReTr[U(p)]+
κ

3 ∑
x

4

∑
µ=1

Re
[
Ω

†(x)Uµ(x)Ω(x+ µ̂)
]

(2.2)

If we can derive SP at µ = 0, then (in principle) we also have SP at µ > 0 by the following identity:

Sµ

P [Ux,U†
x ] = Sµ=0

P

[
eNt µUx,e−Nt µU†

x

]
(2.3)

which is true to all orders in the strong coupling/hopping parameter expansion. This identity will
be supplemented by simulations with an imaginary chemical potential, as explained below.

Let S′L be the lattice action in temporal gauge with U0(x,0) fixed to U ′x. It is not so easy to
compute SP[U ′] directly. But the ratio (“relative weights”)

e∆SP =
exp[SP[U ′x]]
exp[SP[U ′′x ]]

(2.4)

is easily computed as an expectation value

exp[∆SP] =

∫
DUkDφ eS′L∫
DUkDφ eS′′L

=

∫
DUkDφ exp[S′L−S′′L]e

S′′L∫
DUkDφ eS′′L

=
〈

exp[S′L−S′′L]
〉′′

(2.5)
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where U ′′x denotes a configuration slightly different from U ′, and 〈...〉′′ means the VEV in the Boltz-
man weight ∝ eS′′L . Now suppose Ux(λ ) is some path through configuration space parametrized by
λ , and suppose U ′x and U ′′x differ by a small change in that parameter, i.e.

U ′x =Ux(λ0 +
1
2

∆λ ) , U ′′x =Ux(λ0−
1
2

∆λ ) (2.6)

Then the relative weights method gives us the derivative of the true effective action SP along the
path: (

dSP

dλ

)
λ=λ0

≈ ∆S
∆λ

(2.7)

The question is: which derivatives will help us to determine SP itself?
We compute derivatives of SP w.r.t. Fourier components ak of the Polyakov lines

Px ≡
1

Nc
TrUx = ∑

k
akeik·x (2.8)

For a pure gauge theory, the part of SP bilinear in Px is constrained to have the form

SP = ∑
xy

PxP†
y K(x−y) (2.9)

Then, going over to Fourier modes

1
α

1
L3

(
∂SP

∂aR
k

)
ak=α

= 2K̃(k) (2.10)

Having obtained K̃(k) in SU(3) gauge theory by the relative weights method just described, we
Fourier transform to obtain K(x− y), simulate the PLA (2.9) by standard methods, and compute
the Polyakov line correlator G(R) = 〈PxP†

y 〉. This correlator can also be computed in the underlying
lattice pure gauge theory, with the results (on a 163 lattice) shown in Fig. 1.
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Figure 1: The Polyakov line correlators for pure gauge theory at β = 5.6 and β = 5.7, computed from
numerical simulation of the effective PLA SP, and from simulation of the underlying lattice SU(3) gauge
theory.
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We now consider the SU(3) gauge-Higgs action. Including linear and bilinear center symmetry-
breaking terms, it can be shown that at finite chemical potential

SP = ∑
xy

PxP†
y K(x−y)+∑

xy
(PxPyQ(x−y,µ)+P†

x P†
y Q(x−y;−µ))

+∑
x

{
(d1eµ/T −d2e−2µ/T )Px +(d1e−µ/T −d2e2µ/T )P†

x

}
(2.11)

To help determine center symmetry-breaking coefficients d1,d2,Q(x−y; µ) it is useful to compute
dSP/dak at imaginary chemical potential µ/T = iθ . This resolves certain ambiguities in the appli-
cation of (2.3). Details can be found in ref. [1]. In our exploratory work in [1] we have neglected
Q(x− y; µ) on the grounds that it is rather small; however, the existence of quadratic symmetry-
breaking terms that may be important at large µ can be inferred (see below). Having determined
K(x−y) and d1,d2 by the relative weights method, we can then compare, at µ = 0, Polyakov line
correlators computed by Monte Carlo simulation of the PLA and of the underlying gauge-Higgs
theory. The comparison is shown, at β = 5.6 and several values of κ , in Fig. 2.
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(b) κ = 3.8
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Figure 2: The Polyakov line correlators for the gauge-Higgs theory at β = 5.6 and κ = 3.6,3.7,3.8, com-
puted from numerical simulation of the effective PLA SP, and from simulation of the underlying lattice
SU(3) gauge theory. In the latter case we show off-axis points computed by standard methods, together with
on-axis points using Lüscher-Weisz noise reduction.

3. Solutions at finite chemical potential

Our next step is to try to solve the effective PLA at non-zero µ . We first ignore bilinear
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symmetry-breaking terms, and solve (2.11) with Q = 0. A variant is to consider that the symmetry-
breaking terms proportional to d2 most naturally arise from “double-winding” terms

d2e2µ/T Tr[U2
x ]+d2e−2µ/T Tr[U†2

x ] (3.1)

via the SU(3) identities

Tr[U2
x ] = Tr[Ux]

2−2Tr[U†
x ] , Tr[U†2

x ] = Tr[U†
x ]

2−2Tr[Ux] , (3.2)

With that motivation we will also consider the action

SP =
1
9 ∑

xy
Tr[Ux]Tr[U†

y ]K(x−y)+
1
3 ∑

x

{
d1eµ/T Tr[Ux]+d1e−µ/T Tr[U†

x ]
}

+
1
6 ∑

x

{
d2e2µ/T Tr[U2

x ]+d2e−2µ/T Tr[U†2
x ]
}

(3.3)

Lastly, we can consider the “heavy-dense” quark model in temporal gauge:

eSL = ∏
x

det
[
1+heµ/TU0(x,0)

]p
det
[
1+he−µ/TU†(x,0)

]p
eSplaq (3.4)

where p = 1 for staggered fermions, p = 2N f for Wilson fermions. If we compute the Polyakov
line action Spg

P for the pure gauge theory via relative weights, then

eSP = ∏
x

det
[
1+heµ/TUx

]p
det
[
1+he−µ/TU†

x

]p
eSpg

P (3.5)

We solve these theories by complex Langevin, following the approach of Aarts and James [2],
and also by a mean field method [3]. Let the three eigenvalues of a Polyakov line holonomy be
eiθi with θ3 = −(θ1 +θ2), and the logarithm of the Haar integration measure becomes part of the
Lagrangian. The angles θ1,2 are complexified, and the complex Langevin equation is solved numer-
ically. However, as pointed out by Møllgaard and Splittorff [4], the complex Langevin approach
can lead to incorrect results if the evolution repeatedly crosses the branch cut of the logarithm. To
study this, we keep track of the argument of the logarithm of the Haar measure

Arg = sin2
(

θ1(x′)−θ2(x′)
2

)
sin2

(
2θ1(x′)+θ2(x′)

2

)
sin2

(
θ1(x′)+2θ2(x′)

2

)
(3.6)

at an an arbitrary lattice site x′. In Fig. 3 I show the results for the Polyakov lines and the number
density for the action (3.3), derived from complex Langevin and mean field at β = 5.6,κ = 3.9.
Note the phase transition. It is hard to even detect a difference between the two methods. One also
finds that the argument of the logarithm (3.6) almost never crosses the branch cut.1

Likewise, for the heavy-dense quark model, there is also near-perfect agreement between the
two methods, as seen in Fig. 4, and one also finds no branch-cut crossing problem. (For other
approaches to this model, see e.g. [5], [6].)

When we consider the action (2.11) at β = 5.6,κ = 3.9, the Langevin and mean-field results
diverge at approximate µ = 2.75, as seen in Fig. 5. However, where the results differ, it turns
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Figure 3: Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via
complex Langevin and mean field techniques, in gauge-Higgs theory at κ = 3.9 for the action SP in eq.
(3.3), which includes quadratic center symmetry-breaking terms.
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Figure 4: Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via
complex Langevin and mean field techniques in the heavy-dense quark model. Note the saturation at high
µ/T at density=3.

out that complex Langevin evolution has a branch-cut crossing problem of the type pointed out by
Møllgaard and Splittorff [4], as seen in a plot (Fig. 6) of (3.6) at various values of µ .

It is natural to ask why mean field works so well. This is probably due to the fact that many
spins, not just nearest neighbors, are coupled to a given spin, through the non-local kernel K(x−y).

1However, at the larger µ values one also finds that complex Langevin evolution has more than one solution,
depending on initial conditions. It is necessary to choose the solution which has a probability distribution which is
bounded by an exponential dropoff in the space of complexified angles.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
2
3
3

Effective Polyakov line actions Jeff Greensite

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.5  1  1.5  2  2.5  3

<T
r(U

)>

µ/T

gauge-Higgs g=3.9

Langevin
mean field

(a) 〈Tr(U)〉

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3

<T
r(U

+ )>

µ/T

gauge-Higgs g=3.9

Langevin
mean field

(b) 〈Tr(U†)〉

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  0.5  1  1.5  2  2.5  3

pa
rti

cl
e 

nu
m

be
r d

en
si

ty

µ/T

gauge-Higgs g=3.9

Langevin
mean field

(c) density

Figure 5: Comparison of Polyakov lines 〈Tr(U)〉,〈Tr(U†)〉 and number density vs. µ/T , computed via
complex Langevin and mean field techniques, in gauge-Higgs theory at κ = 3.9 for the action SP in eq.
(2.11), where quadratic center symmetry-breaking terms are neglected.

For this reason the basic idea behind mean field theory, i.e. that each spin is effectively coupled to
the average spin on the lattice, may be a very good approximation to the true situation.

4. Conclusions

To summarize: We have developed a method for determining the effective Polyakov line ac-
tion, at both zero and finite chemical potential µ . At µ = 0 there is excellent agreement for the
Polyakov line correlators computed in the effective theory and underlying lattice gauge theory. At
µ > 0 we can solve the effective theory by either mean field or complex Langevin methods. Where
the two methods agree, they agree almost perfectly. Where they disagree, complex Langevin has
a Møllgaard-Splittorff branch cut crossing problem [4], which demonstrates that a problem of this
sort can arise in a field theory whose action includes a logarithmic part.

A possible way around the branch cut difficulty for Polyakov line models is to complexify the
SU(3) elements Ux,U

†
x , rather than the angles θa(x), a strategy which is used for lattice gauge the-

ory (see [7] for a review) and which was already mentioned in [2]. In that case the exponentiation
of the measure factor is avoided, and there is no branch cut problem. It is interesting nevertheless to
see that the branch cut problem does appear in a non-trivial field theory with a logarithmic determi-
nant in the action. In real QCD, it is impossible to avoid the logarithm of the fermionic determinant
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Figure 6: Argument of the logarithm for gauge-Higgs theory at β = 5.6, κ = 3.9, and chemical potentials
1.5≤ µ/T ≤ 3.25 (subfigures a-d), evaluated at each Langevin time step. The presence of many points near
the negative real axis is very plain at β ≥ 2.75, signaling the presence of a branch cut problem.

in the action. Whether the branch cut problem will be an issue for Langevin simulations of real
QCD with light fermions is as yet unknown.

The next step in this project is to apply the relative weights technique to a gauge theory coupled
to dynamical fermions, and again the goal is to extract the effective Polyakov action via the relative
weights method, as solve it at finite µ via mean field theory. We hope to report on the results at a
later time.

For a more complete exposition of the work described in these proceedings, see [1] and [8].
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