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We present our study of the QCD medium magnetic properties. We use N f = 2+1 quark flavors
QCD at the physical point, with Symanzik tree level improved gauge action and stout improved
staggered fermions. We find that the strongly interacting matter behaves as a paramagnet in the
range of temperatures (100− 400) MeV, with a sharp increase of the magnetic susceptibiliy at
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collisions, we found that the magnetic contribution to the pressure can reach up to the 40% of the
total pressure near the crossover transition. Finally we discuss preliminary results on higher order
magnetic contributions to the free energy.
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1. Introduction

In the last years many efforts have been devoted to the study of strongly interacting systems
in the presence of external magnetic fields with energy close to the QCD scale [1, 2, 3, 4]. From
the phenomenological point of view one expects to find these conditions during off-central heavy
ion collisions (eB ' 0.1GeV2) [5], in compact astrophysical objects (eB ' 10−6GeV2) [6] and in
early cosmological stages (eB ' 1GeV2) [7]. A full understanding of the QCD properties in the
presence of such fields is clearly of fundamental interest to describe these phenomena, furthermore
it can help to clarify many unsolved aspects of the theory.

If we consider a thermal medium in the presence of external magnetic fields, a first issue we
may address is the dependence of thermodynamical quantities on such background. In particular,
a relevant observable is the free energy density of the system. To study the dynamics of strongly
interacting systems beyond perturbation theory one can use the lattice formulation of QCD, where
an external magnetic field can be easily added to the discretized theory inserting proper U(1)
phases in the Dirac operator [8]. However, due to the toroidal geometry of our lattice space-time
(imposed to reduce finite size effects), we cannot arbitrarly choose the magnetic field values in our
simulations, which instead get quantized. For a system with minimum charge q = |e|

3 , one arrives
to the following quantization condition [9]:

eB =
6πb

a2LµLν

, b ∈ Z (1.1)

where Lµ , Lν are the lattice extents along the directions orthogonal to the magnetic field. This
quantization condition hinders the possibility to directly compute on the lattice free energy deriva-
tives with respect to the magnetic field. In the last years several methods have been proposed to
circumvent this problem (see [10, 11, 12, 13, 14]). In this work we present our latest determination
of the magnetic susceptibility of QCD matter and of the pressure dependence on B [11]. Finally
we discuss preliminary results of higher order terms in the free energy dependence on the magnetic
field.

2. The method

We determine the free energy density dependence on the magnetic filed B by measuring the
finite free energy differences [10, 11]:

∆ f (b,T ) = f (b,T )− f (b−1,T ) =
∫ b

b−1

∂ f (b̄,T )
∂ b̄

db̄ (2.1)

where b ∈ Z is the magnetic quantum in Eq. 1.1. This can be done defining a trajectory in param-
eter space which interpolates from the system with a uniform magnetic background (b−1) to the
system with uniform field b. This procedure defines an analitic extension of the free energy f (b,T )
for unquantized values of the magnetic field, where f does not refer anymore to the free energy
density of a system with a uniform magnetic field. Indeed, for b /∈ Z, f (b,T ) is just an interpo-
lating function between different magnetic quanta, which reduces to the free energy density of the
physical system for b ∈ Z. Among the possible different paths, our choise is to move straight from
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(b−1) to b, introducing a real valued magnetic field b /∈Z which explicitly breaks the quantization
condition. Finally we obtain ∆ f (b,T ) integrating the derivative ∂ f (b,T )

∂b over the above defined path,
where ∂ f (b,T )

∂b does not correspond to the magnetization of the system, but it is just the derivative of
the chosen interpolating funtion.

The integrand in Eq. 2.1 have been computed on the lattice by measuring the operator:

∂ f
∂b

=
1

4a4LtL3
s

∑
f=u,d,s

〈tr{∂D f

∂b
D f−1}〉 , (2.2)

where D f is the Dirac staggered operator. We divided each magnetic quantum into a grid of 16
equally spaced points where we computed the operator Eq. 2.2, then we obtained the energy differ-
ences integrating over the spline intepolation of the obtained values.

The free energy suffer from O(b2) additive ultraviolet divergencies (for a detailed discussion
see [13]), which can be removed using the following prescription [10, 11]:

∆ f r(b,T ) = ∆ f (b,T )−∆ f (b,0) (2.3)

where the two energy differences must be computed at the same lattice spacing.

3. Numerical results

3.1 Magnetic susceptibility

In [11] we performed lattice QCD simulations using N f = 2+1 quark flavors for three different
lattice spacings a=0.2173,0.1535,0.1249. We used a Symanzik tree level improved gauge action
and stout improved staggered fermions, and we chose the simulation parameters corresponding to
a line of constant physics with physical value of the pion mass [11]. For all the explored lattice
spacings, the spatial lattice size has been choosen so as to keep a physical extent aLs ' 5 fm,
while we used Nt = 4,6,8,10,12 temporal sizes for the finite temperature simulations. The T = 0
simulations needed for the subtraction in Eq.(2.3) has been done using hypercubic lattices.

To measure the magnetic susceptibility of the QCD medium, we considered the free energy
density expansion:

f (B,T ) = f (0,T )+
1
2

c2(T )B2 +O(B4) (3.1)

From Eq 2.1 we obtain:

∆ f (b,T ) = f (b,T )− f (b−1,T ) =
∫ b

b−1

∂ f (b̄,T )
∂ b̄

db̄ =
1
2

c2(T )(2b−1)+O(b4) (3.2)

Then we extracted the value of the c2(T ) coefficient fitting the free energy differences ∆ f (b,T )
using Eq. 3.2. The slope difference c2R(T ) = c2(T )− c2(T = 0) yields to the renormalized mag-
netic susceptibility:

χ̃(T ) =−|e|
2µ0c

18h̄π2 L4
s c2R(T ) SI units (3.3)

χ̂(T ) =−
(

L2

6π2

)2

c2R(T ) natural units (3.4)
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Figure 1: Left: Continuum extrapolation of the magnetic susceptibility χ̃(T ) from our data at three different
lattice spacings. Right: Magnetic contribution to the pressure, evaluated at two different values of the
magnetic field eB = 0.1 GeV2 and eB = 0.2 GeV2. The P(B = 0) data have been taken from [16].

In Fig. 1 (left) we report our results for the magnetic susceptibility for the three different values of
the lattice spacing. We found that strongly interacting matter is paramagnetic in all the explored
range of temperatures (100−400) MeV, with a magnetic susceptibility which sharply increases at
the crossover transition, Tc = (150−160) MeV.

In the low temperature region, T < 170 MeV, our data can be fitted using the ansatz χ̃(T ) =
Aexp(−M/T ), giving M = 870± 260 MeV, which is in the mass range of the lightest hadrons
carrying non trivial magnetic moments, like the ρ meson. This behavior seems in line with an
Hadron Resonance Gas (HRG) model expectation, however a direct comparison with the HRG
predictions shows substantial discrepancies with our data, as we will discuss later.

In the high temperature limit, the behavior of our data is correctly described by the functional
behavior A′ log(T/M′), which is expected from the lowest order perturbative prediction at asymp-
totically high temperatures [15].

To perform a continuum extrapolation of our results we had to fix a definite ansatz for the
χ̃(T ) behavior in the continuum, since given the present number of points we cannot perform
a parametrization independent continuum extrapolation. We fitted our data choosing a function
which reproduces the two behaviors in the different range of temperatures:

χ̃(T ) =

{
A exp(−M/T ) T ≤ T̃
A′ log(T/M′) T > T̃

(3.5)

where to obtain a continuos and differentiable matching at T = T̃ we impose the constraints:

A′ = AM exp(−M/T̃ )/T̃ , M′ = T̃ exp(−T̃/M). (3.6)

Since our data are not precise and dense enough to extract the lattice dependence of all the param-
eters, we introduced the lattice spacing dependence only for a subset of fit parameters. We verified
that the two subsets:

• {T̃ ,A,M0,M2} with M = M0 +a2M2

• {T̃ ,A0,A2,M} with A = A0 +a2A2
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Figure 2: Left: Comparison with the HRG prediction in the low temperature phase. The two HRG lines
have been computed following [17], using the same renormalization prescription of our lattice determiantion.
Right: Finite free energy differences for fields up to eB ≈ 0.4 GeV2. Dashed lines correspond to the fits:
f (b)− f (b−1) = 1

2 c2(T )(2b−1)+ 1
4! c4(T )

(
b4− (b−1)4

)
.

return equivalent results for the continuum extrapolation. In Fig. 1 (left) we show our continuum
extrapolation togheter with data points. The value of T̃ turns out to be compatible with the crossover
temperature, T̃ = 160(10) MeV.

3.2 EoS

Let us discuss now the effect of the magnetic fields on the equation of state of the system. Since
we are dealing with a system with zero chemical potential, the pressure will be given by P = − f ,
so the change in the pressure of the system is easily obtained as ∆P(B) = −∆ fR = 1

2 χ̂(eB)2 and
is plotted in Fig. 1 (right), as a function of T , for two different values of the magnetic field (we
make use of our continuum extrapolation), normalized by the pressure at eB = 0. We notice that
the introduction of the magnetic field leads to a relative increase of the pressure which is larger
around the crossover transition, and is in the range of 10-40% for typical field values produced
during heavy ion collisions at the LHC. In the high-T regime, instead, the relative increase rapidly
approaches zero, as expected, since the pressure at eB = 0 grows like T 4.

In Fig. 2 (left) we compare for a couple of values of eB the pressure of the thermal medium
∆P(B) ' −∆ fR = 1

2 χ̃(eB)2, computed from our continuum extrapolated susceptibility, with the
HRG prediction for the same quantity (i.e. without vacuum contributions) extracted from the results
reported in Ref. [17]. A few differences are clearly visible between the two: the HRG predicts a
slight diamagnetic behavior for low T , where the pions contribution, which is indeed diamagnetic,
dominates. Instead for larger fields or temperatures the main contribution to the pressure comes
from the hadrons with higher spin, and the pressure behavior becomes paramagnetic. Our lattice
results do not confirm this weak diamagnetic behavior for small fields and temperatures. However,
for T . 100 MeV our current precision is not fine enough to exclude such behavior. It would be
interesting in the future to further investigate this issue.

3.3 Higher order terms

We found that the linear approximation, Eq. 3.1, can be used for magnetic fields up to eB =

0.2 GeV2. To explore higher values of eB we need to include higher order terms in the free energy
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Figure 3: Left: Relative contribution of the quartic term to the first order term for T = 214 MeV, where
T = 1

aNt
. Right: Vacuum renormalized magnetization Mr(0,B) compared with results from [12].

expantion f (b,T ) = f (0,T ) +∑n
( 1

2n

)
!c2nb2n, where the coefficients c2n can be fitted from the

finite energy differences and are related to the higher order dimensionless combinations:

χ̂2nT 4(n−1) =−c2n

(
L2

6π

)2n( 1
Nt

)4(n−1)

n = 1,2, ... (natural unit) (3.7)

Once again we have to cure the diverging terms in the free energy density, a possible prescription is
to subtract all the vacuum contributions, which means: χ̂r

2n = χ̂2n(T )− χ̂2n(0). Using this prescrip-
tion we gain information about the thermal medium alone. Alternatively, one can subtract only the
O(b2) term coming from the vacuum, which is the only diverging contribution in the free energy.
We decided to use this second prescription.

We performed a preliminary computation of χ̂4 for two temporal extents Nt = 4,6, for one
lattice spacing value a = 0.1535 fm. In Fig. 2 (right) we report the results of the integration Eq. 2.1
for magnetic quanta up to b = 15. Since the single finite differences f (b)− f (b−1) can be deter-
mined independently for each quantum b, we can easily move to large values of the magnetic field
picking nonconsecutive magnetic quanta. In the fits reported in Fig. 2 (right) we used Eq. 3.7 to
obtain χ̂4T 4 = 2.5(7) ·10−4, 2.2(2) ·10−4 respectively for Nt = 4,6. For the vacuum, which in our
simulations refers to Nt = 32, corresponding to T ' 40 MeV, we found χ̂4T 4 = 1.6(2) ·10−6.

An estimate of the range of fields in which the quartic term becomes relevant to the free
energy determination can be easily obtained considering the ratio χ̂4(eB)4/4!

χ̂r
2(eB)2/2 . In Fig. 3 (left) we

show this ratio for the case Nt = 6, where we see that the quartic term χ̂4 becomes significant for
eB ≥ 0.2 GeV2. We also determined χ̂6 from out Nt = 32 data, finding χ̂6T 8 = −1.7(3) · 10−10.
We used these preliminary results to compute the vacuum magnetization of the system:

M(eB) = eBχ̂2 +(eB)3 χ̂4

3!
+(eB)5 χ̂6

5!
+O

(
(eB)7) (3.8)

We defined the renormalized magnetization as in [12], subtracting the O
(
(eB)2

)
term, Mr =

M− eBχ̂2. In Fig. 3 (right) we plot our results together with the magnetization computed in [12].
We found a good agreement between the two determinations, with our determination being signif-
icantly more accurate.
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4. Conclusions

We presented our latest determination of the QCD magnetic properties in the presence of
strong magnetic fields. We found a paramagnetic behavior of the strongly interacting matter for all
the explored temperatures. Near the crossover temperature the magnetic contribution to the pres-
sure is at the level of 10% for eB= 0.1 GeV2, while for higher field, eB= 0.2 GeV2, it reaches about
the 40% of the total pressure. We also presented preliminary results for higher order magnetic con-
tributions to the pressure, finding that such terms become relevant for large fields, eB≥ 0.2 GeV2.
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