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The Hosotani mechanism claims to achieve gauge-symmetry breaking, for instance SU(3)→
SU(2)×U(1). To verify this claim, we propose to monitor the stability of a topological defect
stable under a gauge subgroup but not under the whole gauge group, like a U(1) flux state or
monopole in the case above. We use gauge invariant operators to probe the presence of the
topological defect to avoid any ambiguity introduced by gauge fixing. Our method also applies to
an ordinary gauge-Higgs system.
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Figure 1: Contour lines of the effective potential Veff(TrP5) in the three phases, resulting from different
matter contents and boundary conditions in the extra dimension. Black dots mark the minima in each case.

1. Introduction

Dimensional reduction tells us that QCD at high temperature can be effectively described as
a 3d Yang-Mills theory, plus an adjoint Higgs field generated by the static mode of A0, i.e. by
the Polyakov loop. Dimensional reduction also occurs in the case of a compact extra dimension:
a (4+ 1)d Yang-Mills theory is effectively described as a 4d Yang-Mills, plus an adjoint Higgs
field coming from the Polyakov loop P5 in the extra dimension. This led Hosotani [1], in 1983, to
the scenario of “gauge-Higgs unification”: by a judicious choice of matter content and boundary
conditions in the extra dimension, the minimum of the effective potential for TrP5 can be displaced
from its trivial value A5 = 0. Then, the corresponding 4d adjoint Higgs field acquires a non-
trivial vacuum expectation value, which can [partially] break the gauge symmetry of the Yang-
Mills theory. While this scenario seems to be disfavored phenomenologically, we are concerned
here with a different aspect: how can one diagnose the claimed breaking of gauge symmetry? Our
proposal actually applies also to genuine (gauge + Higgs) systems.

2. The Hosotani mechanism

We consider a (4+ 1)-dimensional theory with gauge group SU(3) and a compact extra di-
mension. The effective potential Veff(TrP5) can be obtained in perturbation theory, by considering
the static modes of the gauge and matter fields. As shown by Hosotani, adjoint fermions with pe-
riodic boundary conditions in the extra dimension give a contribution opposite to that of gluons,
and can displace the minimum of Veff from the trivial one (Fig. 1 left) to that of Fig. 1 middle or
right. The 3 cases have been dubbed “deconfined”, “split” and “reconfined”. They exist also in a
(3+1)-dimensional system, where they were found in a serendipitous way [2], in a project aimed
at understanding center symmetry breaking in QCD(Adj) as proposed by Unsal [3].

Let us consider the diagonalized form of the SU(3) matrix P5 in the 3 cases. Up to eigenvalue
permutations and global phases exp(±i 2π

3 ), one finds


+1 0 0
0 +1 0
0 0 +1


 (“deconfined”),



−1 0 0
0 −1 0
0 0 +1


 (“split”), and




e+i 2π

3 0 0
0 e−i 2π

3 0
0 0 1


 (“reconfined”).

While the first matrix, the identity, is invariant under any SU(3) gauge transformation P5←Ω†P5Ω
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∀Ω ∈ SU(3), this is not true of the other two matrices. In the “split” case, P5 is left unchanged only
if Ω∈ SU(2)×U(1). In the “reconfined” case, P5 is left unchanged only if Ω= exp(iθ3λ3+ iθ8λ8),
i.e. Ω ∈ U(1)×U(1). Therefore, we are in a situation where the action maintains full SU(3)
gauge invariance, but the vacuum does not (in the split and reconfined cases): this characterizes the
breaking of the gauge symmetry.

The situation is no different from that of an ordinary Higgs field: one says that the gauge
symmetry “breaks” when the Higgs field “develops an expectation value”, although the action
remains gauge-invariant and the expectation value 〈φ〉 remains exactly zero (in the absence of
gauge-fixing). Here too, 〈A5〉 remains exactly zero under the action of gauge transformations Ω

which permute the eigenvalues of P5.
Nevertheless, the long-distance physics of the 3 phases is dramatically different: the 4d theory

has 8 gluons in the first case, or 3 gluons and 1 photon in the second case, or 2 photons in the third.
The presence of photons gives rise to a Coulomb potential between corresponding probe charges.
Yet, these different physics are very hard to recognize, because the corresponding SU(2) and U(1)
gauge subgroups are “scrambled” differently at each lattice site.

Let us focus on the “split” SU(2)×U(1) phase. One might consider detecting the Coulomb
potential by measuring SU(3) Wilson loops. But this will not work: each link is a product of an
SU(2) and a U(1) element, and the trace of such a loop will obey an area law coming from the
SU(2) factors, regardless of the U(1) factors. Clearly, finding a signature of the above phenomena
in the infrared properties of the effective 4d theory is not as simple as one might initially think.
One way out would perhaps be to fix the gauge 1, with a gauge condition which minimizes the
magnitude of the SU(3) link elements which do not belong to SU(2)×U(1) or U(1)×U(1).
The latter is the well-known Maximal Abelian gauge. Here, we want to study gauge-invariant
observables, and follow a different route.

3. Gauge symmetry breaking seen in a gauge-invariant way

Since the eigenvalues of P5 are gauge-invariant, it is instructive to consider the quadratic fluc-
tuations m−2

k = 〈(Ā5
k−〈Ā5

k〉)2〉 of the static mode Ā5 defined via P5 = exp(igL5Ā5
k
λk). These

fluctuations determine the Higgs mass squared. A possible k-dependence will be a clear sign of
gauge-symmetry breaking. These masses can be determined by perturbation theory around the vac-
uum corresponding to each phase. They are shown in Fig. 2 [5]. As one would expect, fluctuations
of Ā5 about the trivial vacuum in the deconfined phase are isotropic in color space. The same is
true in the reconfined phase, where Z3 symmetry is enforced in P5 locally. Remarkably, in the split
phase two different masses are found, for fluctuations of Ā5 in the λ3 and λ8 directions. In other
words, Veff(Ā5) is elliptical, not spherical, in the split phase. However, this interesting phenomenon
is of no relevance to long-distance 4d physics, because the Higgs mass is of order 1/L5.

Our proposal is to monitor the stability of topological excitations supported by a gauge sub-
group in the case of gauge-symmetry breaking, but not by the whole gauge group. The simplest
example is provided by Π1(U(1)) = Z , while Π1(SU(3)) = Π1(SU(2)) = 1. The corresponding
topological excitation, an Abelian flux in some plane xy, is going to be stable if the gauge sym-
metry is broken down to a subgroup U(1), but will otherwise unwind in a larger SU(3) or SU(2)

1No signal was found by Jim Hetrick, as presented in [4].
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Figure 2: Mass squared of the Higgs field, as a function of the size of the extra dimension, for two ad-
joint fermions. In the split phase, the two Abelian components of the Higgs field have different masses.
Perturbative calculation and figure from [5].

gauge group. The same happens with an Abelian monopole. The stability of these objects can be
monitored via gauge-invariant observables like the plaquette.

Let us first consider an xy Abelian flux in a U(1) gauge theory on an Lx×Ly×Lz×Lt lattice.
To prepare such a state, start from a "cold" configuration Uµ(x) = 1 ∀x,µ . Then, in each xy plane,
insert a 2π flux by arranging the links so that each xy plaquette Pxy is equal to exp(i 2π

LxLy
). From

this starting configuration, perform usual Monte Carlo updates, and monitor the gauge-invariant
flux action: ∆ = 〈TrUPxz〉− 〈TrUPxy〉, where the difference is taken to isolate the effect of the xy
flux. Classically, ∆ = 1− cos 2π

LxLy
≈ 2π2

L2
xL2

y
. The leading effect of fluctuations is to modify Pxy and

Pxz in the same way, so that ∆∼ 〈TrUPxz〉(1− cos 2π

LxLy
B) for B units of flux. This simple prediction

is completely consistent with the numerical simulation of Fig. 3, where B is incremented every 50
Monte Carlo sweeps. Flux states are extremely stable, since for their decay one xy plaquette in
each plane must go through angle π . This only happens at the right edge of the figure.

We can now repeat this construction in the case of SU(3) gauge-symmetry breaking. Starting
from a "cold"2 configuration, prepare a flux state in some specific U(1) subgroup, in each xy plane:
θU(1) =

2π

LxLy
. Then perform ordinary Monte Carlo sweeps of the SU(3) link variables, but with

an action which is expected to induce gauge-symmetry breaking. In our case, we chose to induce
gauge-symmetry breaking by applying an external potential hFReTrP5 + hA|TrP5|2, following [6].
This is simpler and computationally much cheaper than simulating adjoint fermions.

One effect of the SU(3) Monte Carlo updates is to rotate in SU(3) the U(1) subgroup where
the flux was introduced, independently at each lattice site. To some extent, this local scrambling
could be undone by gauge-fixing. But gauge-fixing is not necessary: what we want to ascertain is
whether the U(1) flux is still there. For that purpose, it is sufficient to monitor the gauge-invariant
excess action in the xy planes, namely ∆ = 〈TrUPxz〉−〈TrUPxy〉, just like in the pure U(1) case.

Fig. 4 shows the results of such an experiment in the reconfined phase (SU(3)→U(1)×U(1)).
On the y-axis, ∆ has been normalized to its value in the pure U(1) case. Interestingly, the excess

2“Cold” here stands for a state which minimizes the total lattice action, with non-trivial P5.
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Figure 3: Average xy and xz plaquettes in a U(1) system, under the introduction of one unit of xy magnetic
flux every 50 sweeps. The dotted line is the leading prediction. Flux states are long-lived and cause a shift
of the in-plane plaquette.

action depends on the U(1) subgroup where the flux is introduced. The reason is the following. In
all cases, a U(1) angle θ = 2π

LxLy
is introduced in each xy plaquette. The corresponding action is

1−Tr(eiθ ) ≈ 1
2 θ 2 in the pure U(1) system. But in the SU(3) system, if the flux is introduced in

the λ3 subgroup, the corresponding action is 1− 1
3 Tr{diag(eiθ ,e−iθ ,1)} ≈ 1

3 θ 2. And if the flux is
introduced in the λ8 subgroup, the action is 1− 1

3 Tr{diag(eiθ ,eiθ ,e−2iθ )} ≈ θ 2. Thus, a magnetic
flux in the λ3 or λ8 subgroup incurs an action equal to 2/3 or 2 times that in a U(1) system,
respectively. This is precisely what Fig. 4 shows, with horizontal dotted lines corresponding to 2/3
(subgroup λ3), 2 (subgroup λ8) or 14/3 (2 units of flux in λ3 plus 1 unit in λ8). Note that these
topological excitations are extremely stable: their sudden decay after 1000 Monte Carlo sweeps is
due to our turning off the external potential which maintained the reconfined phase. Then, the full
SU(3) gauge symmetry is immediately restored, and the U(1) fluxes can freely unwind.

The next topological defect we have considered is a magnetic monopole, which is visible via
its gauge-invariant 3d magnetic flux through the 6 faces of an elementary cube (see Fig. 5 left).
Actually, we are interested in a classical monopole, obtained by minimizing the action of a 3d
U(1) lattice of size L3 containing one monopole. To enforce the presence of one monopole, we
introduce a flux π through 3 of the faces of the lattice, and choose charge-conjugated periodic
boundary conditions in each of the 3 directions, Uµ(x+L) = U∗µ(x). The resulting construction,
Fig. 5 right, is the analogue of the DeGrand-Toussaint monopole on the left, but on the scale L
instead of a. It was already used in [7] to measure the monopole mass, but the numerical results
presented there turn out to be incorrect.

Fig. 6 left shows the minimum energy (measured by cooling) of a U(1) magnetic monopole
induced by the above boundary conditions, as a function of the size L of the cubic lattice. To
understand its L-dependence, consider first a monopole of charge QM = 2π/e in the continuum.
The energy of the magnetic field inside a sphere of radius R is E(R) = 2π

∫ R
0 dr r2 B(r)2. It is

UV-divergent, and the lattice spacing a will cutoff the integral and regularize the divergence. In
the infrared, since B(r) = QM/(4πr2) as dictated by Gauss’ law, one obtains E(R = ∞)−E(R) =

5
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Figure 4: In an SU(3) system in the reconfined phase (U(1)×U(1)), magnetic flux is introduced in the xy
plane. The corresponding shift in the xy plaquette, normalized to that in a pure U(1) system, is shown for
several flux combinations in the λ3 and λ8 subgroups. The dotted lines show the classical predictions. After
1000 sweeps, the gauge-symmetry breaking potential is turned off: the full gauge-symmetry is restored and
the flux states decay immediately.

Q2
M

8π

∫
∞

R dr1/r2 = 1
e2

π

2R . This calculation is slightly modified in a cubic box with C-periodic boundary
conditions. The boundary conditions generate an infinite array of mirror charges, arranged in a
cubic array of spacing L and alternating in sign, as in an Na+Cl− crystal. They interact via a 1/r
potential, so that the energy of the array is proportional to α3 =∑

′
i jk

(−1)i+ j+k√
i2+ j2+k2

=−1.74756.., which

is called Madelung’s constant. The resulting monopole energy correction is E(R = ∞)−E(R) =
1
e2

α3
2

π

L = 2.745..
L . This is precisely the 1/L dependence seen in Fig. 6 left. Since its origin is infrared,

this term is universal, i.e. independent of the lattice action considered. The leading term of course
depends on the form of the ultraviolet cutoff, and thus is action-dependent. The additional, 1/L3,
tiny corrections come from (a/L)2 lattice corrections to the continuum Coulomb potential.

Now, as in the case of U(1) fluxes, we can introduce a U(1) monopole in a subgroup of an
SU(3) configuration. If the gauge symmetry is broken by the external Polyakov loop potential,
the U(1) monopole is stable, and we can measure its energy by cooling. The results are shown
Fig. 6 right. First, the monopole energy depends on the U(1) subgroup chosen, just like for fluxes.
This fact was first noticed in Ref. [8] which used Maximal Abelian gauge and Abelian projection
to isolate the monopoles. Here, we obtain precise values for the monopole energies in the ther-
modynamic limit: contrary to the energies of flux states, the monopole energies are not obtained
by applying a simple factor to the U(1) case, because the UV-regularization of the monopole field
differs in the different subgroups. Nevertheless, the coefficient of the 1/L correction, which comes
from IR effects, varies as for flux states: it is 2/3 and 2 times the U(1) value for subgroups spanned
by λ3 and λ8, respectively. Moreover, the 1/L3 coefficients scale in the same way, since they are
all caused by the same lattice distortion of the Coulomb potential.

The topological excitations considered here, Abelian fluxes and monopoles, are appropriate for
diagnosing gauge-symmetry breaking to a U(1) subgroup. To diagnose gauge-symmetry break-
ing to an SU(2) subgroup, one should monitor the stability of a ’t Hooft-Polyakov monopole.
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a ∑6 plaq θplaq = 2π L ∑3 planes θplane = π

Figure 5: (left) DeGrand-Toussaint magnetic monopole in an elementary cube of size a. (right) The same
construction on the scale L of the whole lattice ensures the presence of a magnetic monopole somewhere
inside. Charge-conjugated boundary conditions are required to obtain non-zero fluxes at the boundary.
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Figure 6: (left) Minimum action of a U(1) magnetic monopole as a function of the size L of the cubic lattice.
The 1/L correction is caused by the cubic array of image-charges with alternating signs, and its magnitude is
exactly given by Madelung’s constant. (right) Same, for a U(1) magnetic monopole in the λ3 or λ8 sector of
an SU(3) system in the reconfined (U(1)×U(1)) phase. The two types of monopoles have different masses.
The 1/L correction is given by the correspondingly rescaled Madelung constant.

This next step is under investigation. Finally, it is clear that our approach can be used without
change to diagnose gauge-symmetry breaking in an ordinary gauge-Higgs system. Note that our
construction is completely non-local, so that it does not contradict the Fradkin-Shenker argument
against the existence of an order parameter distinguishing the Higgs and the confining regimes.
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