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1. Introduction

With the discovery of the Higgs boson all ingredients in the standard model (SM) of particle

physics have been completed in a sense, that it indeed describes particle interactions in the regime

of energies that can presently be probed experimentally. There are however phenomena that cannot

be explained by the standard model, like dark matter, dark energy and the incorporation of gravity

in the framework of the other three known fundamental forces. Thus, the SM can account for

all phenomena and needs to be replaced at some yet unknown energy. In [1] this question has

been analyzed through the stability of the electro-weak vacuum and a lower bound for the Higgs

boson mass was found that is required to obtain a fully stable vacuum. This bound was found to

be at mH > 129.4± 1.8 GeV. The main uncertainties originates from the top quark mass and the

strong coupling, determined at the mass of the Z-boson αs(mZ). The mass bound was obtained by

running all SM couplings up to the Planck scale and requiring that the quartic self coupling of the

scalar doublet λ remains positive. A Higgs boson with a mass slightly below the bound derived

in [1] may yield a meta stable vacuum: The system can remain in a local minimum of energy with

a non-vanishing probability to tunnel into the global vacuum with lower energy. Depending on

the parameters, such a meta stable state can have a mean life time that exceeds the life time of the

universe, so that such a scenario does not have immediate consequences.

In this work we pursue an approach that investigates how the standard model Higgs boson

mass lowe bound can be altered by the inclusion of a higher dimensional operator in the electro-

weak sector. Explicitly we add a λ6ϕ6 term to the action. With λ6 > 0, the action remains bounded

from below even for negative quartic self coupling of the scalar fields. The inclusion of such a term

may appear naturally if one considers the Higgs sector of the SM as a low energy effective theory

obtained by integrating out degrees of freedom at some higher scale physics. For our investigations

we use a chirally invariant lattice formulation of the Higgs-Yukawa model as a limit of the SM

where only one family of quarks and the scalar doublet are considered. This model was already

successfully used to determine the cutoff dependence of the Higgs boson mass bounds for the

SM [2, 3], and to investigate the change on those bounds in case of a heavy fourth generation of

quarks [4].

Earlier works showed that in the Higgs-Yukawa model with λ6 = 0 the phase transition of

interest, i.e. the transition between a symmetric and a broken phase with small quartic couplings

and yukawa couplings generating quarks with a mass of the order of the top quark mass, is of

second order. This may change drastically with the inclusion of a λ6ϕ6 term due to the more

complex structure of the bosonic potential. As we will see below, depending on the choice of λ

and λ6 there appear lines of first order transition separating the symmetric and the broken phases

or even further transitions between different non-zero magnetizations.

In this work we present results on the phase structure and the Higgs boson mass having λ6 6= 0.

We study both aspects perturbatively by means of Lattice perturbation theory using a constraint

effective potential (CEP) and non-perturbatively via lattice simulations.

2. The Higgs-Yukawa model on the lattice

The field content of the Higgs-Yukawa model in this work is given by a mass degenerate
fermion doublet ψ and the complex scalar doublet ϕ . The continuum formulation of the action of
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the Higgs-Yukawa model is given by:

Scont[ψ̄,ψ,ϕ] =
∫

d4x

{

1

2

(

∂µ ϕ
)†

(∂ µ ϕ)+
1

2
m2

0ϕ†ϕ +λ
(

ϕ†ϕ
)2

+λ6

(

ϕ†ϕ
)3

}

+

∫

d4x
{

t̄ /∂ t + b̄/∂b+y(ψ̄Lϕ b
R
+ ψ̄Lϕ̃ t

R
)+h.c.

}

, (2.1)

with ϕ̃ = iτ2φ∗ and τ2 being the second Pauli matrix.

For any details on the numerical implementation of the lattice simulations we refer to [5]. We

just mention that we use the polynomial Hybrid Monte Carlo algorithm as the basic simulation

tool. For the discretization of the fermions we use the chirally invariant overlap operator. To set the

scale we identify the vacuum expectation values (vev) of the scalar field with the phenomenological

value of vev ≈ 246 GeV.
The perturbative results are obtained by using a constraint effective potential U(v̂) [6, 7]. The

basic idea is that the system is dominated by the zero mode of the scalar field, and therefore we
can integrate out all non-zero modes. The vev of the scalar field and the Higgs boson mass can be
obtained by the global minimum and the curvature at the minimum of the potential, respectively:

0 =
dU(v̂)

dv̂

∣

∣

∣

∣

∣

v̂=vev

, m2
H =

d2U(v̂)

dv̂2

∣

∣

∣

∣

∣

v̂=vev

. (2.2)

We point out, that we explicitly keep the lattice regularization in the perturbative approach. Thus,

we will work with only discrete momenta and we also use the overlap operator for the fermionic

kernel.
We compare two expressions for the CEP which differ by the decomposition of the action into

an interaction part that has to be expanded in powers of the couplings and a Gaussian part that can
be integrated out. The first expression was already used in [8, 2] for the Higgs-Yukawa model and
is given to first order in λ and λ6 by:

U1(v̂) =U f (v̂)+
m2

0

2
v̂2 +λ v̂4 +λ6v̂6

+λ · v̂2 ·6(PH +PG)+λ6 ·
(

v̂2 · (45P2
H +54PGPH +45P2

G)+ v̂4 · (15PH +9PG)
)

. (2.3)

In the propagator sums PH/G = 1
V ∑p6=0

1
p̂2+m2

H/G

the masses are set “by hand” to zero for the Gold-

stone and to the Higgs boson mass obtained from eq. (2.2). U f denotes the contribution from

integrating out the fermions in the background of a constant field.
A second possibility to formulate the CEP is obtained, when taking zero-mode contributions

from the self interactions of the scalar field into account, by integrating out the Gaussian part in the
non-zero modes of the scalar field. In this approach, logarithmic dependence on v̂ appear. Further
the propagator sums and the first order contribution in the self couplings change, yielding:

U2(v̂) =U f (v̂)+
m2

0

2
v̂2 +λ v̂4 +λ6v̂6 +

1

2V
∑
p6=0

log

[

(

p̂2 +m2
0 +12λ v̂2 +30λ6 v̂4

)

·
(

p̂2 +m2
0 +12λ v̂2 +30λ6 v̂4

)3
]

+λ
(

3 P̃2
H +6 P̃H P̃G +15 P̃2

G

)

+λ6v̂2
(

45 P̃2
H +54 P̃H P̃G +45 P̃2

G

)

+λ6

(

15 P̃3
H +27 P̃2

H P̃G +45 P̃H P̃2
G +105 P̃3

G

)

,

(2.4)

with

P̃H =
1

V
∑
p6=0

1

p̂2 +m2
0 +12v̂2λ +30v̂4λ6

, P̃G =
1

V
∑
p6=0

1

p̂2 +m2
0 +4v̂2λ +6v̂4λ6

. (2.5)

This second method should be more precise but has a limited range of validity depending on the

parameters: It fails, when the argument of the logarithms become negative leading in this case to a

complex potential.
3
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3. Results on the phase structure

For our analysis we chose two values for λ6, namely λ6 = 0.001 and λ6 = 0.1. Using the the

tree-level relation mt = y · vev we further fix the Yukawa coupling to yield the physical top quark

mass. We work at several values for λ and perform scans in m2
0 or, equivalently, the scalar hopping

parameter in the lattice action κ1. For the here performed phase structure study we use the vev

as an order parameter. In infinite volume the vev is zero in the symmetric phase and non-zero in

the broken phase. In finite volume the vev never assumes an exactly zero value, so eventually an

extrapolation to infinite volume must be carried out to unambiguously determine the phase structure

of the system.
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Figure 1: The first two plots show the vev as a function of κ for various values of λ while λ6 is kept fixed to λ6 = 0.001

(a) and λ6 = 0.1 (b) obtained on 163×32 lattices. We show a comparison between data obtained from lattice simulations

(open squares) with the CEP U1 (crosses) and U2 (dots). In (c) the dependence on the volume is illustrated for λ6 = 0.001

and λ =−0.0085.

As a first step we compare results obtained from the CEP and lattice simulations in figure 1a

and 1b where we show the vev against the hopping parameter κ on a 163 ×32 lattice. We show for

both values of λ6 the results from lattice simulations and the analytical results from both CEPs in

eqs. (2.3) and (2.4). Both setups show qualitatively the same picture: With λ6 > 0 and negative but

small λ , the transition between a symmetric phase and a broken phase is continuous which suggests

a second order transition, while for smaller λ the order parameter shows a jump at some transition

value indicating a transition of first order. For λ6 = 0.001 both potentials describe the data very

well, although the quantitative agreement is slightly better for the CEP U2 in eq. (2.4). The potential

U1 in eq. (2.3) also fails to exactly reproduce the first order phase transition for λ = −0.0088.

However, if one decreases λ further, also the potential U1 shows a first order transition. For λ6 = 0.1

the CEP U2 does not reproduce the behavior of the simulation data. This is not surprising, since in

this case analyzing the CEP U2 in the region of parameter space close to the the phase transitions

we meet the difficulty that the effective potential becomes complex. Qualitatively U1 shows still a

good agreement, but again the value of λ where the transition turns first order is not reproduced

exactly. In 1c we show the volume dependence of the vev for fixed λ6 = 0.001 and λ =−0.0085,

comparing results obtained from both potentials and simulation data. We find, that the qualitative

behavior of the simulation data is very well reproduced by both perturbative approaches.

Since the constraint effective potential describes the results from the simulations reasonably

well, we will rely on the CEP to perform a more complete study of the phase structure with large

volumes. Furthermore, we restrict ourselves to the potential U1. The exact location of the phase

transition in finite volume cannot easily be determined from the order parameter alone due to the

1The relation between κ and m2
0 is given by: m2

0 =
1−8λκ2−8κ

κ .
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fact that the vev does not exactly go to zero. One possibility is to investigate the curvature of the

potential at its minimum which is identical to the squared Higgs boson mass according to eq. (2.2).

The inverse curvature of the potential in the minimum is related to the susceptibility and the peak

position of which can then be used for locating of the phase transition point.
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Figure 2: The first plot shows the vev (inlet) and the inverse curvature at the minimum of the potential as a function of

κ for various volumes. The first peak is a good indicator for a second order transition, while the second peak without

volume dependence may refer to a cross over. The other figures show the result of a more complete phase structure

scan for λ6 = 0.001 (middle) and λ = 0.1 (right) obtained from the CEP U1 (2.3). There are two phases - a broken

and a symmetric one - separated by lines of first and second order phase transitions. Further there is a small region in

parameter space, where there is also a first order transition between two broken phases (for λ6 = 0.001 and λ6 = 0.1).

The lines connecting the data points are to guide the eye.

In figure 2a an example plot is shown that illustrates the behavior of the order parameter and the

inverse curvature of the potential at its minimum as a measure of the susceptibility for λ6 = 0.001

and λ = −0.0085. The inverse curvature shows two peaks. The first peak is getting higher with

increasing volume, a typical behavior of the peak of the susceptibility which is diverging at the

critical coupling when the volume is increased to infinity. The second maximum does not increase

with increasing volume which suggests that this is a crossover transition.

Performing such scans systematically, we obtain the phase diagrams in the κ − λ -plane for

both fixed λ6 = 0.001 in figure 2b and λ6 = 0.1 in figure 2c. Qualitatively both diagrams show

the same behavior: for λ = 0 there is a single phase transition of second order separating the

symmetric and the broken phases. If λ is decreased, the transition point moves to smaller κ . A

some point, a line of crossover transition appears in the broken phase which turns into a line of

first order transition. At some critical point the line of second order transition joins the first order

transition line. Beyond that, only a first order transition separates the symmetric and the broken

phases. For λ6 = 0.1 the region in the parameter space where the first order and the crossover

transitions appear in the broken phase is very narrow. Given the fact that the agreement between

the CEP and the simulation data for a value of λ6 = 0.1 is not completely satisfactory, a test of the

phase structure from numerical simulations would be very desirable.

4. Results on the Higgs boson mass
In this section, the influence of the λ6ϕ6 term on the lower Higgs boson mass bound is dis-

cussed. Especially we look at the cutoff dependence of the lower Higgs boson mass. In figure. 3

we show the perturbative results obtained with the potential U1 for both values of λ6 used. We also

show the result of the lower Higgs boson mass bound for the case of vanishing ϕ6 term. All data

with non-zero λ and λ6 show a similar behavior. For small cutoff values the mass increases sub-

stantially, a phenomenon which is not present for the case of vanishing couplings. This behavior

is related to the mass shift from positive λ6 values, which contribute significantly at small cutoff

5
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scales. The Higgs boson mass then has a minimum at some given cutoff (for the data that show

a second order transition) and increases as similar to the SM bound. Further we can see that the

Higgs boson mass gets smaller, when λ is decreased. As a criterion, how low the quartic coupling

can be driven, we use a value of λ where the transition between the broken and the symmetric

phase turns from second to first order.
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Figure 3: Shown is the cutoff dependence of the Higgs boson mass obtained from the CEP according to eq. (2.2)

for λ = 0.001 on a 643 × 128-lattice (left) and λ = 0.1 on a 1923 × 384 (middle) and preliminary results from lattice

simulations for λ6 = 0.001. In all plots we also show the standard model lower mass bound (λ6 = λ = 0).

For the case of λ6 = 0.001 the lower Higgs boson mass bound is significantly decreased as also

found in [9]. Thus, for such small values of λ6 the here considered extension of the standard model

with a ϕ6-term is fully compatible with the 126 GeV Higgs boson mass. For λ6 = 0.1 the situation

changes since here the lower bound meets the 126 GeV Higgs boson mass at a cutoff of around

800 GeV, which is still inside the scaling region. Thus, large values of λ6 cannot be admitted as an

extension of the standard model. For both values of λ6 and at large cutoffs the influence of the ϕ6

becomes negligible and we find the SM-like behavior of the lower Higgs boson mass bound as a

function of the cutoff.

Preliminary results on the cutoff dependence of the lower Higgs boson mass obtained from

non-perturbative lattice simulations can be found in fig. 3c for a fixed value of λ6 = 0.001. We

show data for values of λ corresponding to ones used in figure 3a. Note that for some of the

intermediate λ values the order of the phase transition is still not clear. Although the data for

λ & −0.0087, where there is still a second order phasetransition, still have large error bars, it is

evident, that also non-perturbatively the standard model lower bound can easily be decreased well

below 126 GeV while keeping mH/Λ well below 1/2 and hence staying in the scaling region.

5. Summary and conclusion
We studied the phase structure of a chirally invariant lattice Higgs-Yukawa model – allow-

ing non-perturbative computations – with the addition of a λ6ϕ6 term as a simple model for an

extension of the standard model. Having λ6 > 0 allows to set the quartic coupling λ < 0. We

found good agreement between a lattice perturbation theory approach using the CEP and Monte

Carlo simulations for the behavior of the vacuum expectation value as function of the bare mass. A

systematic study of phase transitions using the vev and the susceptibility led to the phase diagrams

shown in figures 2b and 2c. We found transitions of first and second order separating the symmetric

and the broken phase as well as first order transitions separating two broken vacua indicating the

possibility of meta stable states. The appearance of first order phase transitions in the presence of a

ϕ6-term can be very interesting for the case of a non-zero temperature. It might lead to a scenario

where a simple addition of a ϕ6-term can provide a strong enough first order phase transitions to be

6
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compatible with electro-weak baryogenesis in the early universe [10]. Another aspect of the phase

diagram in figure 2 is that at fixed bare Higgs boson mass one can move from a symmetric to a

broken phase by only changing the value of the quartic coupling.

Further we investigated the influence of the dimension-6 operator on the Higgs boson mass

bound with respect to the question whether the addition of this operator can be compatible with a

126 GeV Higgs boson mass and whether the lower bound can be altered compared to the Higgs-

Yukawa limit of the standard model (i.e. λ6 = 0). We found that for the values of λ6 considered

here, at large values of the cutoff the lower bound can be significantly decreased before it becomes

compatible with the case of λ6 = 0 for increasing cutoffs. However, for a larger value of λ6 = 0.1

the lower Higgs boson mass bound meets the 126GeV Higgs boson mass already at a cutoff of

about 800GeV. Thus, such a large value of λ6 is excluded. We plan to determine a critical value of

λ6 from which on an extension of the standard model with a ϕ6-term is not compatible anymore

with the 126 GeV Higgs boson mass. This can in turn provide bounds on models beyond the SM

that generate effectively such a term.
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