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1. Introduction

Mass Reweighting [1] is an interesting and efficient metlwocorrect and to include effects of
guark masses. It can be used for tuning, e.g. the strangk muessmg in a 2+1 simulation or the
isospin splitting in the up-quark massg, and the down-quark mass;. Moreover it can be applied
to understand the mass behavior of observables. For smradictions it is applicable and more
efficient than new simulations. Mass reweighting involves ¢valuation of fermion determinants
which can be rewritten by an integral representation. Tiiisgral representation can be estimated
by Monte Carlo integration which needs around 100 invessimfithe Dirac operator to control the
stochastic noise efficiently.

The reweighting factor enters the measurement of an oldderiag [2]

(ow) 7

(O)w = W) (Ow) (1.1)

where the mass reweighting factor for flavors of quarks

U detDiy,,,

_ (1.2)
i= detDmold,i

is normalized with\/ = W /(W). Here, the Dirac operator is given by the clover improveds@sl
Dirac operatoiD,, = D + m. The reweighting factor can be rewritten as a determinat @tio

matrix M with
1 1
N

W= det|‘|i:1 [DE}}ewinTbm,i] B detM"
In general lattice simulations are done in the isospin sytrimimit in the light quark sector by
setting the light quark masses to the average light quarls mas= 0.5(m, +my). The idea is to
use mass reweighting to introduce isospin breaking. Theigdwing is performed by splitting up
the light quark masses by keeping the average quark massobfs,q = m, + My = constand it
follows with the mass shifbmyg = mq —my

(1.3)

my=myg—05-Amyg+ myg — Myg+0.5-Amyg = my. (1.4)
This leads to the isospin reweighting factor

1 1
~ det[DmiDm,Dm.Dm,] detMiso’

Wiso (1.5)
Now, the determinant of the non—hermitian matvixcan be rewritten by an integral representation
given by

ﬁ =/D[n]exp{—n*lvln} (1.6)

which holds forA (M +MT) > 0 [3] and the normalized integral measure is given dy]D=
I—l?:lde dy;/mwith nj = xj +iy;. The integral eq. (1.6) can be estimated stochastically

11
detM  Nj .

Np
Ze_”;(M_”'“ +0(1/\/Ny) (17)
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Table 1. The table shows the analyzed CLS - ensembles generatenwith2 - ¢'(a) improved Wilson

fermions withm,q = my, = my [4]. We used ensembles of three different lattice spacingih pion masses
my from 580 MeV down to 192 MeV and lattice volunw/a®. The number of configuratiorstg are

seperated by MDUs/config witRy; the relative number of active links. The maximal reweiggtiange is
given by the quark mass shift in th&S-scheme\mg max. The renormalized mass is defined as in [4].

ID v /at affm] mz[MeV] Nerg MDUs/config-Racet AMrmax[MeV]

A5 64x32 0.076 330 202 201 4.43(60)
E4 64x32 0.066 580 100 160.37 71(17)
D5 48x24 440 503 81 5.9(10)
E5S 64x32 * 440 99 160 0.37 6.01(96)
F7 96x64 270 350 16 0.37 501(38)
G8 128x64 192 90 81 5.86(56)
07 96x48 0.049 270 08 401 5.63(40)

by drawingN,, pseudofermion fieldg distributed via the normalized functidn exp{—n'n} and
I the unit matrix with dimension df1. Note for every drawn field) ni—inversions of the Wilson
Dirac operatoDy, have to be performed.

In general mass reweighting introduces fluctuations whichease the statistical error. These
fluctuations are the ensemble fluctuations, introduced byetisemble average in eq. (1.1), and
the stochastic fluctuations, introduced by the stochasticnation of the integral eq. (1.6). The
fluctuations are given by the variance averaged over therdieeand the pseudofermioms We
will define the variance of the integral representation &d)(by o2 = ((ww')p) — (W) ) ((W') )
with the stochastic estimav&U,n) =1/N, 5; exp{—niT(M —1)ni}. By performing they—average
()n (i.e. alln; independently) the fluctuations are given for firlitg by

o2 L 1 Ny -1 1 /1 1 1.8)
~ Np \detM+MT—1) N, \detMMT detM / \ detMT '

which holds forA (M +MT —1) > 0. The stochastic fluctuations for one configuration arergive
neglecting the ensemble averggend vanish foN, — c. Moreover by introducing a mass inter-
polation between the start and the target mass the stocllastuations can be further controlled,
i.e. if no Dirac operator has a zero eigenvalue during trejtiation the conditiod (M +M™) > 1
can be insured [5]. In this case the number of inversiomés_] N - N, whereN is the number of
interpolation steps. Note for many reweighting cases iffexcent to use the even-odd precondi-
tioned Wilson—Dirac operator (e.g. see [6]), however we aldfimd an improvement in the case of
isospin reweighting. The ensemble fluctuations can be tdygedcluding additional quarks into
the reweighting process, e.g. in the case of isospin rewsgthe fluctuations are minimized by
keeping the average quark masg = 0.5(m, + my) constant during the reweighting.

Here, we will discuss mass reweighting by introducing aspgo breaking in the light quarks.
We will show the scaling of the different fluctuations (ensdemand stochastic) and how the up—
and down—quark mass can be extracted from the analyzed blesefsee tab. 1).
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Figure1: The relative stochastic fluctuations of the isospin rewsigffactor is shown as a function of the
renormalized quark mase3 is the average of the stochastic variance estimated 0jng 6.

2. lsospin Reweighting

The isospin reweighting factor eq. (1.5) can be expande?!kin'ﬁ’nj

_ detDp, detDp,

Wso = deid, = 1+ AmGyTr(Dy2) + O/(Ag) (2.1)
d

by using deM = exp{Tr(In(M))}. The fluctuationso in eq. (1.8) of the isospin reweighting
factor can be expanded iwmZ,. It can be shown that the stochastic fluctuatiagsdecouple
from the ensemble fluctuatiomgg,  with 02 = a3 + 02, The stochastic fluctuations in the isospin
reweighting case are given by

o2(N; A 1
asereI(NinV) = < a 2mV)> = r.nﬁd Tr 5 )+ 0 (AmBg) - (2.2)
w I\llnv <D DT
Myd = Mud
The ensemble fluctuations are
OZns = Am, var (Tr {—1 D + 0 (amby) (2.3)
w2 =y

with the variance v40) = (O?) — (0)2. Note this is true because the Dirac operatonsis
hermitian. Now, the cost can be derived by demanding thatstbehastic fluctuations do not
dominate the ensemble fluctuations, e.g. tgf, (Niny) /02~ 0.1.

By using the analyzed ensembles, listed in table 1, it isiplesto deduce numerically the
scaling behavior of the fluctuations in the quark mass andsdhéme. However in the case of
the stochastic fluctuations the trace of the Wilson Diracaioe is known in chiral perturbation
theory, e.g. as in [7], byTr—1—) O % The numerical analysis is consistent with this behavior.

(DD")?
It follows for the stochastic fluctuations (see fig. 1)
AMEV 1
2 R
0% o ~ K - — 2.4
strel StNinvm{q r6 ( )

4
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Figure 2: The scaling of the ensemble fluctuations for different vadumehaviors is shown. The left figure

shows the quark mass behavior for a volume behaviaY\6fand the right figure for a volume behavior of
V4,

by using the scaleg [8] to form dimensionless quantities. By fixing the volumenhagior toV
we perform a fit (black, solid) to the quark mass behavior bngishe ensembles E4 (green,
triangle), D5 (red, diamond), E5 (black, triangle), A5 (ayaircle), O7 (magenta, diamond), F7
(blue, square) and G8 (green, star). For each ensemble waueog and g2, for two values of
Am = AMmay/2, Ammax (See tab. 1). The quark mass behavior is given'by 2.63(5). For the red
lines the quark mass behavior and the volume behavior is fb(la’dnﬁ and only ensembles with
pion masses: 340MeV are included. The data show a good agreement withxjieceation from
chiral perturbation theory for pion masse340MeV.

The leading term of the ensemble fluctuations eq. (2.3) isgtmnal to vafTrD~2). Numer-
ically we observe a weak volume dependex@evith g < 1. Similar to the stochastic fluctuations
the ensemble fluctuations can be written as

Amgva 1

2
O-ens"‘ kens m
R

et (2.5)
0
In general the simultaneous deduction of the volume and tleekgmass behavior is difficult.
A varied volume behavior changes simultaneously the masavii. A good fit is given for a
volume scaling ofj = 0.25 (see left figure 2) which gives a mass behavior 6f3.85(13) for all
ensembles (black line) anmd= 3.94(31) for ensembles with pion masses340MeV (red dashed
line). A weaker volume behavior is also supported by congparof D5 and E5 ensembles, which
givesqg ~ 0.46. However by assuming a similar quark mass behavior agicabe for the stochastic
fluctuations withr = 3 the scaling in the volume is roughly given Qy~ 0.75. In the right figure
2 we fixed the volume behavior tp= 0.75 which gives a mass behavior of= 2.83(13) by
including every ensemble (black line) ang- 3.04(31) by including ensembles with pion masses
smaller than< 340MeV (red, dashed line). We conclude that the volume hiehas given by
g~ 0.25...0.75 by a simultaneous variation of the quark mass behavian fro- 4. .. 3.

The cost of isospin reweighting can be estimated from the rat

ke (Lmpn)°L

/
GsznreI(NinV)/O-eznsN Kens Ninv-To with & =1le-3 (2.6)
ns ns
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Figure 3: The figures show the average quark mags (left) and the mass splittingyy — my plotted versus
Rs after fixingRy andR,. The masses are renormalized in M8—scheme at 2GeV.

for q=0.25 andr = 4. For the G8 ensemble follows;,, ~ 200 for a ratio of OL.

3. Quark Masses

The continuum limit can be performed on a line of constantsptsy This line can be defined
by keeping dimensionless ratios of physical quantitiestaomt. These fix the bare mass parameters,
here, a quenched strange quark witf) the isospin mass splitm,q and the average light quark
massm,y. We take the ratios

L OSMEoimE) L mong
LT 05(feo+ k)2 7 2 (05(fgo + ke )2

with the meson masses, the piog:, the neutral kaomyo and the charged kaarnk+ and the kaon
decay constant$so and fx=. The physical values of the ratios are taken from [9] and veeiae
0.5(fgo + fx+) = 155 MeV. Now, the strategy is to u$g to fix ms, which is done in [4] andR,

to fix the isospin splittingAm,q. Afterwards the ratidRz is used to extrapolate the light quarks
towards the physical limit.

We measure the PCAC mass on the analyzed ensembles (seg aalol donvert them into
the MS-renormalization scheme. The dimensionless r&&oandRs are given in the lowest order
chiral perturbation theory up t&'(Angy,mé) by Ry = 5 Amyg(1+Cmyg) andRs = % Myg With
constantsB, C andF2. Now, it is possible to perform extrapolations towards thgsical point in
the light quark masses. For the average light quark masstsigwn in the left figure of fig. 3 by
assumingmyq(Rs) ~ a1Rs. By using the F7 and G8 ensemble the average light quark méss a
physical point at finite lattice spacing af= 0.066 fm is given bym,gr = 3.19(11) MeV. For the
mass split in the light quarks (see right plot in figure 3) weuasedAm,q(Rs) ~ bo + b1Rs. By
using the data of the E5, F7 and G8 ensemble it follows for thgssplittingAm,q = 2.49(10) MeV
at finite lattice spacing = 0.066 fm.

The isospin effects enter the observable by the isospinightveg factor which scales propor-
tional toAmZ .. In the case of the PCAC mass the statistical error is too digpared to the effect
of the isospin reweighting correction. A determination loisteffect is only possible for larger

My

and Rs = 65T+ 1) 2

(3.1)
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statistics. Neclecting the sea quark effects proportithhﬁd, by setting the isospin reweighting
factor to one, the isospin quark mass split is giverd\by,g = 2.52(10) MeV. However the isospin
reweighting effects increases for smaller quark massesvangant to reduce the statistical error
to figure out the isospin effects for example in the pion maserder to perform a continuum limit
the statistics has to be increased and other ensemblestheeértcluded.

4. Conclusion

Isospin mass reweighting needs a moderate numerical .€foet analysis shows that the cost
scales with(LMps)?L for a volume scaling of the ensemble fluctuations witil and is around
200 inversions of the Dirac operator for the G8 ensemble vhis a pion mass of 192 MeV at
a volume ofV /a* = 128x 64°. By using the introduced dimensionless ratiRis R, andRs it is
possible to extract the light quark masses. The isospin spgs®g isAmyg = 2.49(10) MeV and
the average quark masamggr = 3.19(11) MeV at finite lattice spacing ai= 0.066 fm. Although
a more careful analysis is needed to extract competitivebeusrit shows that the tuning conditions
are suitable to extract the light quark masses. In order t@e&xcontinuum physics the statistics
has to be improved and QED-effects have to be included. Avaoft package for mass reweighting
[10] (see also [11]) is publicly available in the framewoifittoe openQCDcode[12].
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