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1. Introduction

The Twisted Eguchi-Kawai (TEK) model [1, 2] provides a single site formulation of SU(N)
lattice gauge theory, which in the infinite N limit at fixed bare ’t Hooft coupling reproduces the
infinite volume theory. Moreover, the corrections to the TEK model at finite N take the form (at
least in perturbation theory) of finite volume corrections for an effective lattice size of

√
N. For

example, propagators are identical to those of a normal (
√

N)4 lattice [1, 3]. If this relation holds
in the continuum limit, it would be possible to use the rank of the gauge group as a size parameter
and determine the running of the coupling with respect to it. Essentially, we could simply use a
standard finite volume step scaling procedure and apply it to the single-site model replacing the
linear size of the finite volume, l = La, by l̃ =

√
Na. Usually the renormalization scale is defined in

terms of the linear size of the finite volume, l = La, and the change of scale l→ sl is accomplished
by changing the number of points in the lattice, L→ sL. For the TEK model, the lattice always
consists of a single site, and we implement the change of scale l̃ → sl̃ by scaling the rank of the
gauge group, SU(N) → SU(s2N). To extract the continuum renormalized coupling constant, one
should take the a−→ 0 (N −→ ∞) limit. Thus, according to volume independence, we expect that
the renormalized coupling coincides with that of the ordinary pure gauge theory at N = ∞.

To be specific, we based our method on a finite volume running coupling scheme defined
using the gradient flow [6] in a four dimensional torus with twisted boundary conditions in one
plane [4, 5]. Here we define an analogous scheme in the TEK single site model, which has twisted
boundary conditions in all directions, and use it to perform a step scaling study and determine the
running of the coupling in SU(N) gauge theory in the large N limit.

2. TEK Volume Independence

The TEK model consists of 4 SU(N) matrices Uµ , with the action

S = bN ∑
µν

(
N− zµνTr

[
UµUνU†

µU†
ν

])
, zµν = z∗νµ = e2πik/

√
N for µ < ν , (2.1)

where b is the lattice analog of the inverse ’t Hooft coupling, 1/(Ng2), and the flux k is an integer
coprime with

√
N. In order for volume independence to hold in the large N limit, center symmetry

must not be spontaneously broken, i.e. the trace of all open Wilson loops on the lattice should go to
zero in this limit. This is the case if the flux k is chosen to satisfy k/

√
N > 1/9. The left–hand plot

of Fig. 1 shows the quantity
√

b
∣∣Tr Uµ

∣∣ as a function of k/
√

N for many values of N and b, along
with the perturbative prediction,

√
b
∣∣Tr Uµ

∣∣ ∝ 1/sin(πk/
√

N), which is in good agreement with
the data for b & 2.0. This quantity divided by N is shown as a function of 1/N for the weakest and
strongest values of the coupling used for the step scaling analysis in the right–hand plot of Fig. 1.
Since this goes to zero in the large N limit, reduction should hold.

To all orders in perturbation theory, the TEK model is equivalent to ordinary lattice gauge
theory, up to corrections that depend on the parameter θ̃ , where θ̃ = 2π k̄/

√
N, and k̄ is defined as

the integer that satisfies kk̄ = 1(mod
√

N). To eliminate this effect one should scale k and
√

N so
as to keep θ̃ constant in the large N limit. Strictly speaking this is not possible as k̄ and

√
N have

to be coprime. This is a source of systematic error in our results. However, the variations in θ̃ can
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Figure 1: Left:
√

b
∣∣Tr Uµ

∣∣ vs k/
√

N compared to the pertubative expectation, for many values of b and N.
Right: 1

N

∣∣Tr Uµ

∣∣ vs 1/N at b = 0.36 and b = 2.00. For all values of the coupling this quantity seems to go
to zero in the large N limit. The scatter of the points is caused by k/

√
N varying somewhat with N.

be made smaller for larger values of N, since there are more possible choices for k. The values of
k and N used in this work are listed in Tab. 1.

3. Gradient Flow Coupling

At positive Yang–Mills gradient flow time, the action density of SU(N) gauge theory is a
renormalized quantity which, in infinite volume, has a perturbative expansion [6],

〈E(t)〉= 1
4

〈
Ga

µν(t)G
a
µν(t)

〉
=

3(N2−1)
128π2t2 g2

MS +O(g4
MS). (3.1)

If we work at finite box size l and fix the flow time to a constant fraction of this size,
√

8t = cl, we
obtain a quantity that depends on a single length scale and that to leading order is proportional to
the coupling constant. This allows us to define a renormalized coupling as follows [4, 5]:

λT GF(l)≡ N −1
T (c) 1

N t2〈E〉
∣∣
t=c2l2/8 = λMS +O(λ 2

MS) (3.2)

where λ = Ng2 is the ‘t Hooft coupling. The constant NT (c) is a kinematic factor that ensures that
to leading order λT GF = λMS. In the previous definition the constant c is kept fixed as the scale is
changed. A change in c can be considered a change of renormalization scheme.

In this work, we use this idea to construct the equivalent renormalized coupling definition for
the TEK model where l̃ = a

√
N replaces l. We also need to define the observable that will be used

to estimate the action density. The simplest choice is the plaquette EP:

EP = ∑
µν

(
N− zµνTr

[
UµUνU†

µU†
ν

])
(3.3)

It is convenient to adjust NT (c) to preserve the equality of the bare and renormalized couplings at
leading order on the lattice. This gives

N P
T (c) =

3c4

128

′

∑
n

e−c2N ∑ρ sin2(πnρ/
√

N). (3.4)
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where nρ = 0,1, . . . ,
√

N−1 and the prime in the sum means that we do not include the term with
all nρ = 0.

Alternatively, one can take a different observable ES, which we will call symmetric, as follows

ES =− 1
128 ∑

µ,ν

Tr
{[

zνµUνUµU†
νU†

µ + zνµUµU†
νU†

µUν + zνµU†
νU†

µUνUµ + zνµU†
µUνUµU†

ν −h.c.
]2}

.

(3.5)
We can compute the corresponding factor NT (c) which is given by

N S
T (c) = c4

512 ∑
µ 6=ν

∑
n

e−c2N ∑ρ sin2(πnρ/
√

N) sin2(2πnµ/
√

N)cos2(πnν/
√

N)

∑ρ sin2(πnρ/
√

N)
. (3.6)

We emphasize that choosing NT for each observable as we have done considerably reduces lattice
artefacts as compared to using the continuum factor

NT (c) = 3c4

128 ∑
n∈Z4−{0}

e−π2c2n2
= 3c4

128

[
(θ3(0, iπc2))4−1

]
(3.7)

where the sum is over all non-zero integer 4-vectors, and θ3(0,z) is the Jacobi function.
We define a continuum step scaling function in the usual way:

σ(u,s) = λT GF(sl̃)
∣∣
λT GF (l̃)=u (3.8)

In order to obtain this quantity from the TEK model, one starts with the lattice equivalent

Σ(u,s,
√

N) = λT GF(s
√

N,b)
∣∣∣
λT GF (

√
N,b)=u

(3.9)

and then take the continuum limit (a−→ 0⇔ N −→ ∞) keeping u fixed.

4. Numerical Determination of λT GF

We choose a step scaling factor s = 3/2, and simulate a series of pairs of N;
√

N = 8,10,12
and s

√
N = 12,15,18. The corresponding run parameters are listed in Table 1. For each N we

simulate a series of bare couplings going from weak (b = 2.00) to strong (b' 0.36) coupling. Each
configuration generated in the simulation is separated by a number of sweeps, where each sweep
consists of one heat–bath and 5 over–relaxation updates. The number of sweeps is chosen such that
autocorrelations are negligible. This number increases both with N and as the coupling is made
stronger, and goes up to 1600 sweeps between each measurement for N = 324 at b = 0.37. The
Wilson flow is integrated using the 3rd order Runge–Kutta scheme proposed in Ref. [6], choosing
the integration stepsize between 0.01 and 0.03, and ensuring that the resulting integration errors
are much smaller than the statistical uncertainties.

The parameter c is in principle arbitrary, and different values correspond to different renormal-
ization schemes. In general, a smaller value of c will result in smaller statistical uncertainties, but
at the cost of larger lattice artefacts, and vice versa. Here we take c = 0.30 as a good compromise
between these two effects. The measured couplings using the symmetric definition are listed in
Tab. 2, and have statistical errors O(0.3−0.5%).
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√
N = 8

√
N = 10

√
N = 12

√
N = 15

√
N = 18

(k, k̄) (3,3) (3,3) (5,5) (4,4) (5,7)
θ̃/2π = k̄/

√
N 0.375 0.300 0.417 0.267 0.389

Table 1: Run parameters for each N, where k is the flux, and θ̃/2π = k̄/
√

N is the quantity we would ideally
keep constant for all N.

b
√

N = 8
√

N = 10
√

N = 12
√

N = 15
√

N = 18
0.360 16.643(77) 21.05(10) 25.60(12) - -
0.365 14.383(61) 17.492(82) 20.755(88) - -
0.370 12.979(53) 15.445(67) 17.857(81) 23.52(11) -
0.375 11.843(45) 13.672(58) 15.698(63) 19.788(94) 24.17(11)
0.380 10.986(40) 12.469(51) 14.051(57) 17.350(81) 20.496(97)
0.390 9.624(33) 10.685(40) 11.801(44) 13.882(59) 15.626(66)
0.400 8.601(28) 9.402(33) 10.246(37) 11.579(44) 13.001(54)
0.420 7.091(22) 7.652(25) 8.190(28) 8.966(29) 9.727(35)
0.450 5.718(17) 6.075(19) 6.351(19) 6.796(20) 7.185(24)
0.500 4.370(12) 4.546(13) 4.726(14) 4.971(14) 5.156(15)
0.600 2.9878(76) 3.0635(79) 3.1536(87) 3.2498(86) 3.3256(88)
0.800 1.8556(46) 1.8815(48) 1.9041(47) 1.9419(47) 1.9720(49)
1.000 1.3434(33) 1.3618(32) 1.3747(33) 1.3990(35) 1.4123(36)
1.200 1.0603(26) 1.0712(26) 1.0747(26) 1.0842(26) 1.0990(27)
1.500 0.8030(19) 0.8101(20) 0.8127(20) 0.8227(20) 0.8255(20)
2.000 0.5716(13) 0.5752(13) 0.5771(14) 0.5805(13) 0.5826(14)

Table 2: Measured coupling λT GF for each b and N (symmetric definition).
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Figure 2: To take the continuum limit at fixed u we need to interpolate the data, which is done in two ways.
Left: 4–parameter Padé interpolation of λT GF(

√
N,b) in b (data at different N displaced vertically by 0.2).

Right: 3–parameter polynomial interpolation of Σ(u,s,
√

N)/u in u (data displaced vertically by 0.1).
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5. Continuum Extrapolation of the Step Scaling Function

To take the continuum limit of the step scaling function at fixed u we need to interpolate the
data. In order to check for systematics we do this in two different ways. The first is to interpolate
the coupling as a function of b, for each N, using a 4–parameter Padé function of the form

λT GF(N,b) =
1
b

a0 +a1b+b2

a2 +a3b+b2 , (5.1)

as proposed in Ref. [4]. This allows us to determine the coupling for each N at any value of b,
and hence the step scaling function at any value of u. The second interpolation strategy is to first
construct the lattice step scaling function directly from the data for the available values of the
coupling, then to interpolate this quantity as a function of u using a 3–parameter polynomial of the
form

Σ(u,
√

N)/u = 1+a0u+a1u2 +a2u3. (5.2)

Both these fit functions are constructed to have the correct leading order behaviour in the weak
coupling limit, i.e. λT GF(N,b)→ 1/b and Σ(u,

√
N)→ u. Examples of both fits are shown in

Fig. 2, where the data at different N have been displaced vertically for clarity, and have a similar
χ2/d.o.f.∼ 1. Some examples of the resulting continuum extrapolation in 1/N are shown in the left
hand plot of Fig. 3. At each value of u there are two separate continuum extrapolations. The data
for the symmetric definition of the coupling are shown as crosses, while those using the plaquette
definition are shown as points. The difference between the two definitions at finite N is a measure
of the size of lattice artefacts, and the two definitions should extrapolate to consistent values in the
continuum limit. The errorbars are determined using bootstrap replicas of the data, and using both
interpolation strategies, so they include both the statistical errors and the systematic errors due to
the interpolation. They do not however include the systematic error due to θ̃ not being kept exactly
constant as we take the continuum limit. Indeed the fact that the

√
N = 10 points are systematically

higher than those at other values of N in the extrapolations is presumably due to this effect.
The final continuum determination of σ(u)/u is shown in the right hand plot of Fig. 3 as a

function of u, along with the 1–loop and 2–loop perturbative predictions.

6. Conclusion

We define a scale-dependent renormalized coupling constant for the SU(N) single-site TEK
model by replacing the space-time size parameter of certain definitions by an effective size deter-
mined uniquely by the rank N of the group. We use standard methods to determine the running
of the coupling and the step-scaling function over a wide range of scales. The lattice step-scaling
is extrapolated to the continuum limit by taking the N −→ ∞ limit at fixed values of the coupling.
An optimal extrapolation should be done keeping θ̃ = 2π k̄/

√
N approximately constant. This is a

source of systematic errors which does not seem to have a strong impact on the result.
The resulting extrapolated step-scaling function shows a similar behaviour to standard SU(N)

definitions and matches the perturbative prediction at weak coupling. This result provides evidence
that the relation between finite rank and finite volume is preserved in the continuum limit.
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Figure 3: Left: Some examples of the continuum extrapolation of Σ(u,
√

N)/u in 1/N, using both the pla-
quette (points) and symmetric (crosses) definitions, which extrapolate to continuum values that are consistent
within errors. Right: The final continuum determination of σ(u,s = 3/2)/u vs u, using the plaquette (blue)
and symmetric (red) definitions, along with the 1–loop and 2–loop perturbative predictions. The agreement
between our data at weak coupling and the perturbative prediction is very good.
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