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It is well known that Crank-Nicolson discretization scheme is second order accurate in time.
Its application in the case of the Wilson operator in 3-space leads to a lattice theory which is
second order accurate in time. Applying it in the case of minimally doubled Hamiltonian kernels
one obtains chiral fermions with preserved unitarity. Finally, the scheme can be used to lift the
doubler degeneracy of the naive lattice Hamiltonian kernel with the ground state describing a
single Weyl fermion.
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1. Introduction

In lattice gauge theory it is important to have full control of discretization errors when taking
the continuum limit. Therefore, lattice actions with smaller errors are preferred for simulation
purposes. While in the gauge sector it is straightforward to have discretization errors of the second
order in lattice spacing, the fermion sector is fundamentally more difficult. This can be illustrated
by naive fermions, which in momentum space are defined by the Dirac operator:

DN(p) =
i
a ∑

µ

γµ sinapµ , (1.1)

with a being the lattice spacing. This operator has second order discretization errors in lattice
spacing. However, it has 16 zeros located at the corners of the Brillouin zone which describe 16
degenerate flavors of Dirac fermions. The doublers can be given a mass at the order of cutoff by
breaking explicitly the chiral symmetry, as proposed by Wilson many years ago [1]:

aDW (p) = i∑
µ

γµ sinapµ + r∑
µ

(1− cosapµ) , (1.2)

with r being a real parameter. This way, the chiral symmetry is lost and discretization errors are of
order O(a). Moreover, in the presence of gauge fields, the quark mass gets additive renormalization
terms. This difficulty is rooted to the impossibility of defining a single flavor of chiral fermions on
the lattice [2]. However, it is possible to define two flavors of chiral fermions, as proposed some
time ago by Karsten and Wilczek [4, 5]:

aDKW (p) = iγ4

[
sinap4 +λ ∑

k
(1− cosapk)

]
+ i~γ sina~p , (1.3)

for λ > 1/2. More recently, Creutz proposed to generalize the graphene structure in four dimen-
sions obtaining in this way two flavors for Dirac fermions [6]. This theory can be reformulated
on orthogonal lattices with the lattice Dirac operator resembling the Wilson operator by formally
substituting the r parameter in each direction with another set of gamma matrices γµ

′ multiplied
by i [7]:

aDBC(p) = i∑
µ

γµ sinapµ +∑
µ

iγµ
′(cosapµ −1) . (1.4)

Such fermions have O(a) errors, but more importantly they violate hypercubic symmetry and there-
fore the unitarity of the theory. It is the aim of this paper to define minimally doubled fermions
with preserved unitarity by means of a new discretization scheme. This scheme allows also the
formulation of two flavors of Wilson fermions in space which are second accurate in time.

2. Crank-Nicolson discretization scheme

When discretizing parabolic equations like the imaginary time Schrödinger equation:

∂tψ(t,x) = Hψ(t,x) , ψ(0,x) = ψo(x) ,
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one is essentially interested in approximating the exponential of the Hamiltonian operator which
enters the wave function at positive times:

ψ(t,x) = etH
ψ(0,x) , t > 0 .

Traditional integration schemes include the forward Euler scheme, a finite difference scheme on a
time lattice with lattice spacing a:

ψ(t +a,x) = (1l+aH)ψ(t,x) ,

as well as the Crank-Nicolson scheme [3]:

ψ(t +a,x) =
1l+ a

2 H
1l− a

2 H
ψ(t,x) .

While the latter is obtained from Euler scheme by averaging Hamiltonian contributions of adjacent
time slices:

Hψ(t,x)→ H
2

[ψ(t,x)+ψ(t +a,x)] ,

it has only O(a2) errors in expense of one inversion per time step.

3. Crank-Nicolson lattice fermions

The situation is slightly different when periodic boundary conditions apply as it is often the
case for lattice fermions. Using a generic Hamiltonian kernel in 3-space, H(~p ), the momentum
space Dirac operator:

aD(p) = γ4
(
eiap4−1

)
+

1
2

γ4 H(~p )
(
eiap4 +1

)
, (3.1)

has first order lattice spacing errors. However, the dispersion relation of the theory:

4sin2 ap4

2
+H(~p )2 cos2 ap4

2
= 0 ,

has order O(a2) errors in the continuum limit. While these errors are shared with naive fermions,
the theory has half as many doublers. This property makes the Crank-Nicolson scheme a useful
tool in defining lattice fermions with smaller discretization errors.

3.1 Wilson fermions in 3-space

The number of flavors of the operator (3.1) can be reduced to one if the Wislon discretization
scheme is used in 3-space, thus obtaining the operator:

aD(+)
W (p) = γ4(eiap4−1)+

1
2

[
i~γ sina~p+ r∑

k
(1− cosapk)

]
(eiap4 +1) , (3.2)

where r is the usual Wilson parameter, which we take here to be positive. It is easy to see that
continuum limit of the dispersion relation of the theory:

4sin2 ap4

2
+

sin2 a~p+

[
r∑

k
(1− cosapk)

]2
cos2 ap4

2
= 0 .

3



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
3
2

Crank-Nicolson discretization scheme and lattice fermions Artan Boriçi

has order O(a2) errors along the time direction. Using the momentum space propagator of the
theory:

G(+)
W (p) =

e−iap4/2

2iγ4 sin ap4
2 +[i~γ sina~p+ r ∑k(1− cosapk)]cos ap4

2
,

and contour integration, it is straightforward to show that the theory is unitary.1 Note however, that
time slices of propagators are shifted by a half lattice spacing. The broken parity resulted in this
way can be restored in a two flavor theory defined by the Dirac operator:

DW (p) =

[
0 D(+)

W (p)
D(−)

W (p) 0

]
,

aD(−)
W = γ4(1− e−iap4)+

1
2
(e−iap4 +1)

[
i~γ sina~p+ r∑

k
(1− cosapk)

]
.

Note also that D is γ5-symmetric and benefits from a smaller additive renormalization of the quark
mass.

3.2 Minimally doubled fermions with manifest unitarity

A remarkable property of Crank-Nicolson discretization scheme is the fact that the unitarity
of the theory is manifest. This property can be exploited in order to define minimally doubled
fermions which preserve unitarity at a finite lattice spacing. The Hamiltonian kernel of the theory:

H(~p ) = iγ4 ∑
k

[
γk sinapk + γk

′(cosapk−1)
]

, (3.3)

satisfying the condition:

∑
k

γk = ∑
k

γk
′ ,

has two zeros, one at the origin and the other one at (π/2,π/2,π/2). This way, the corresponding
Dirac operator:

aD+(p) = γ4(eiap4−1)+
i
2 ∑

k

[
γk sinapk + γk

′(cosapk−1)
]
(eiap4 +1) , (3.4)

is chirally symmetric and unitary.2 Note that the cubic symmetry in 3-space remains broken even
in this case. However, it is easy to see that the four flavor theory:

D(p) =

[
0 D+(p)

D−(p) 0

]
,

aD− = γ4(1− e−iap4)+
i
2
(e−iap4 +1)∑

k

[
γk sinapk + γk

′(cosapk−1)
]

,

1See Appendix A for the proof.
2The proof is identically the same as in the case of Wilson fermions in 3-space.
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is γ5-symmetric. The definition of the action is completed by defining the new set of gamma
matrices: γ1

′

γ2
′

γ3
′

=

α11 α12 α13

α21 α22 α23

α31 α32 α33


γ1

γ2

γ3

 , (3.5)

where α is an orthogonal matrix. In appendix B it is shown that γ5
′ = detα γ5. Hence, the chiral

symmetry it is flavored as expected.

3.3 Weyl fermions via the doubler degeneracy splitting

A possible way to define a single chiral fermion and evade the Nielsen-Ninomiya theorem [2]
is to lift the degeneracy of the doublers. The naive Weyl operator, which is based on the Crank-
Nicolson discretization scheme,

aW ′(p) = eiap4−1+
1
2
~σ sina~p (eiap4 +1) ,

describes a quartet of chirality pairs with continuum limit energies:

E(~p ) =±


σ1 p1 +σ2 p2 +σ3 p3

σ1 p1 +σ2 p2−σ3 p3

σ1 p1−σ2 p2 +σ3 p3

σ1 p1−σ2 p2−σ3 p3

,

or in compact form:

E~p ∗(~p ) = cos p∗1 σ1 p1 + cos p∗2 σ2 p2 + cos p∗3 σ3 p3 ,

with ~p ∗ being one of the corners of the three-dimensional Brillouin zone. Adding an imaginary
Wilson term in 3-space, the new operator:

aW (p) = eiap4−1+
1
2

[
~σ sina~p+ ir∑

k
(1− cosapk)

]
(eiap4 +1) , (3.6)

describes a quartet of chirality pairs with continuum limit energies:

E~p ∗(~p ) =
cos p∗1 σ1 p1 + cos p∗2 σ2 p2 + cos p∗3 σ3 p3

1+ r2n2
~p ∗

,

where the operator:

n~p ∗ =
1
2 ∑

k
(1− cosap∗k) ,

takes the integer values 0,1,2,3 [8]. This way, the ground state of the theory describes a negative
chirality chiral fermion at n~p ∗ = 3 with the positive chirality partner being at the highest energy
state at n~p ∗ = 0. Intermediate states at n~p ∗ = 1,2 have opposite chiralities and are three-fold
degenerate. Since the operator n~p ∗ gets additive renormalization terms in the interacting theory,
the chiral anomaly may survive in this case [8].
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A. Källén-Lehmann form of Crank-Nicolson lattice fermions

The Crank-Nicolson fermion operator can be written in the form:

D(p) = γ4eip4/2
[
i 2sin

p4

2
+H(~p )cos

p4

2

]
,

where:

H(~p ) = γ4

[
h4(~p )+ i~γ~h(~p )

]
,

is the Hamiltonian kernel of the theory with hµ(~p ),µ = 1,2,3,4 being a real vector field.3 There-
fore, the quantum theory has a real energy spectrum. The negative energy norms are excluded if
the propagator of the theory admits the Källén-Lehmann form:

G (t,~x) =
∫

∞

0
dE
∫

π/a

−π/a

d3~p
(2π)3 e−Et+i~p~x

ρ(E,~p ) , t > 0 ,

where the spectral density ρ(E,~p ) is positive semidefinite, i.e.:

ψ̄ρ(E,~p )ψ ≥ 0

for any value of the fermion field ψ . The fermion propagator of the Crank-Nicolson lattice theory
can be written in the form:

G(p) = e−ip4/2 −i2sin p4
2 +H(~p )cos p4

2

4sin2 p4
2 +ω(~p )2 cos2 p4

2

γ4 ,

where ω(~p )2 = ∑µ hµ(~p )2. From here position space propagator of the infinite box:

G (t +a/2,~x) =
∫

π/a

−π/a

d4 p
(2π)4 eip4t+i~p~x −i2sin p4

2 +H(~p )cos p4
2

4sin2 p4
2 +ω(~p )2 cos2 p4

2

γ4 ,

is evaluated using the contour integration with respect to p4. Using the residue theorem one finds:

G (t +a/2,~x) =
∫

∞

0
dE
∫

π/a

−π/a

d3~p
(2π)3

e−Et+i~p~x

4tanh E
2

[
2sinh

E
2

+H(~p )cosh
E
2

]
γ4 , t >−a/2 ,

where:

4 tanh2 E
2

= ω(~p )2 .

Since the eigenvalues of the matrix ω(~p ) + H(~p ) are the twice degenerated values of zero and
2ω(~p ), the bilinear form:

ψ̄

[
2sinh

E
2

+H(~p )cosh
E
2

]
γ4ψ

is positive semidefinite. Hence, the negative norms of the quantum theory are thus excluded.

3It is assumed that h4(~p ) vanishes in the continuum limit.
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B. Chirality of the unitary minimally doubled fermions

If gamma matrices are given in the chiral representation:

γk =

(
−iσk

iσk

)
, γ4 =

(
1l

1l

)
,

then the definition of the new set of gamma matrices in (3.5) implies that the same relation holds
in terms of Pauli matrices, i.e. σ ′ = α σ . Using the Pauli matrices property:

σkσl = δkl + iεklmσm ,

and the fact that the matrix α is orthogonal, it is easy to show that:

σ1
′
σ2
′
σ3
′ = ∑

jkl
α1 jα2kα3lσ jσkσl = idetα .

This way:

γ1
′
γ2
′
γ3
′ =

(
0 −iσ1

′σ2
′σ3
′

iσ1
′σ2
′σ3
′ 0

)
= detα

(
0 1l
−1l 0

)
,

and therefore γ5
′ = γ1

′γ2
′γ3
′γ4 = detα γ5.
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