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well suited for studying the relation between confinement and chiral symmetry breaking, since
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1. Introduction

The investigation of propagators is an interesting field of research, because they can help to get
a clearer picture of the non-perturbative aspects of QCD. For instance, from the Gribov-type gluon
propagator in Coulomb gauge it can be motivated why a single gluon is absent from the physical
spectrum. Furthermore, analyzing the quark propagator can yield a better understanding of the
interplay between chiral symmetry breaking and confinement. A relation between the infrared di-
vergence of the quark dressing functions and confinement has been found in Coulomb gauge long
ago, see Ref. [1, 2], and a first step to confirm this conjecture in full QCD has been put forward in
a recent lattice study, Ref. [3]. This relation makes Coulomb gauge appealing for our purpose. We
want to explore the confinement properties of quarks when chiral symmetry is artificially restored
by removing the condensate from the vacuum. In recent years the effect of such an artificial sym-
metry restoration on the hadron spectrum has been analyzed, Refs. [4, 5], and a study of the Landau
gauge quark propagator has been given in Ref. [6], with using a fermion discretization, which only
approximately fulfills the Ginsparg-Wilson equation. A chiral symmetric lattice Dirac operator is
central for our purpose. We use Overlap fermions, Ref. [7], which offer a clear and unambiguous
way to extract the dressing functions of the propagator. Studies in Landau gauge can be found, for
instance, in Refs. [8, 9].

Moreover, the quark sector in continuum Coulomb gauge is not yet satisfactory well under-
stood, although some new insights have been established in recent years within the so-called vari-
ational approach, see Refs. [10], [11]. Therefore a careful analysis of the dressing functions on the
lattice is needed, which could then be used as input into the continuum bound state equations.

In this contribution we present our first results for the Overlap quark propagator in Coulomb
gauge using quenched Lüscher-Weisz gauge field configurations on a 204 lattice. We also briefly
discuss the effect of artificial chiral symmetry restoration on the quark propagator. The final results
will be presented elsewhere, Ref. [12].

2. Lattice Setup

We use quenched Lüscher-Weisz gauge field configurations on a 204 lattice with β = 7.552,
corresponding to the lattice spacing a = 0.2 fm, Ref. [13]. The configurations are generated using
the Chroma software package [14] and QDP-JIT [15, 16]. The average plaquette is 0.5767.

The continuum Coulomb gauge condition ∂iAi = 0(i = 1,2,3) is implemented on the lattice
via maximization of the functional

Fg[U ] = ℜ∑
i,x

tr
[
g(x)Ui(x)g(x+ î)†] (2.1)

with respect to gauge transformations g(x) ∈ SU(3). The cuLGT code, Ref. [17], and the overre-
laxation algorithm, Ref. [18] are used for this purpose.

Our ensemble consists of 96 configurations with six current quark masses chosen to be in the
range m = (85− 173) MeV. The Overlap operator is inverted on point-sources for each configu-
ration. The propagators are Fourier transformed to momentum space and the dressing functions
are evaluated according to the procedure presented in Refs. [3, 19]. The residual gauge freedom
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with respect to space-independent gauge transformations is fixed by the Integrated Polyakov gauge,
Ref. [20].

3. Overlap fermions

The Overlap Dirac operator with mass parameter m0 is given as

D(m0) =

(
1− m0

2ρ

)
D(0)+m0 , D(0) = ρ (1+ γ5sign [HW(−ρ)]) , (3.1)

with the Hermitian Wilson-Dirac kernel HW and the negative Wilson mass ρ . We choose ρ = 1.6
throughout this work. With this definition the eigenvalues lie on a circle in the complex plane with
radius ρ . The Ginsparg-Wilson equation is {D(0),γ5} = 1

ρ
D(0)γ5D(0). From the free propagator

in momentum space it can easily be seen that the redefinition (S denotes the propagator)

S̃ = S− 1
2ρ

(3.2)

leads to the continuum chiral symmetry condition {S̃,γ5}= 0 at tree-level, Ref. [8]. From the free
massive (inverse) quark propagator(

S̃(0)
)−1

(p) = iγµqµ +1m (3.3)

we identify the lattice momenta qµ and current quark mass m to be

qµ =
4ρ2

(2ρ−m0)

kµ

(√
k2

µ +A2 +A
)

k2
µ

, m =
m0

1− m0
2ρ

, (3.4)

with the momenta kµ = sin(pµa), k̂µ = 2sin(pµa/2) and A = 1
2 k̂2

µ −aρ .

4. Quark Propagator in Coulomb Gauge

4.1 Definition and Quark Dispersion Relation

In Coulomb gauge the quark propagator is decomposed into four irreducible Lorentz-tensor
components (~p denotes three-momentum and p = |~p|)

S−1(p, p4) = iγi piAS(p)+ iγ4 p4AT(p)+ γ4 p4γi piAD(p)+1B(p) , (4.1)

with AS,AT,AD,B referring to spatial, temporal, mixed and scalar dressing functions, respectively.
Moreover, we define the dynamical mass function M(p) =B(p)/AS(p), which gives the constituent
quark mass in the limit p→ 0. The results obtained in Ref. [3] as well as our results show that all
dressing functions on the right-hand side of Eq. (4.1) are independent of p4. It is then possible to
evaluate the static quark propagator according to S(p) =

∫ d p4
2π

S(p, p4), yielding

S(p) =
B(p)− iγ · pAS(p)

2ω(p)
. (4.2)
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The quark dispersion relation ω(p) is identified as

ω(p) = AT(p)AS(p)
√

p2 +M2(p) . (4.3)

From mean-field studies in continuum Coulomb gauge it is known that M(p) approaches a constant
for p→ 0, but AS(p) diverges, hence ω(p) diverges. This is how quark confinement reflects itself
in the Coulomb gauge description: via an infrared divergent energy dispersion relation ω(p). In
Ref. [3] a first indication of an IR-divergent dispersion relation is observed.

4.2 Numerical Results

Most interesting are the spatial and scalar dressing functions, AS(p) and B(p), see Fig. 1. Due
to asymptotic freedom for large momenta the vector dressing function AS(p) approaches unity.
The scalar part B(p) goes to the current quark mass and to zero in the chiral limit. Around 1
GeV it acquires non-zero values in the chiral limit, consistent with chiral symmetry breaking and
dynamical mass generation. The scalar part B(p) shows a clear dependence on the current quark
mass m whereas for the spatial dressing function AS(p) only a mild mass dependence is observed.
For zero momentum, B(p) reaches a finite value due to the finite volume of the lattice. The vector
dressing function AS(p) is not accessible at zero momentum. We note, that in order to confirm the
divergence of both dressing functions for p→ 0 proposed by continuum Coulomb gauge studies,
the behavior of the dressing function towards the continuum limit has to be analyzed. This is left
to a future study.

The dynamical quark mass function M(p) is shown in Fig. 2. For large momenta it approaches
the current quark mass m and in the chiral limit it goes to zero, like the scalar dressing function
B(p). For momenta around 1 GeV B(p) starts to increase and tends to a finite value in the IR limit,
identified as constituent quark mass. Due to the relatively large lattice we reach IR lattice momenta
q around 300 MeV. At that value the dynamical quark mass is already around 200 MeV for chiral
quarks. By performing a simple linear fit of the small momentum points to zero momentum,
it is seen that a constituent quark mass around 300 MeV is reached, which goes in hand with
phenomenological predictions. Furthermore, it can be seen that for smaller current quark masses
more dynamical mass is generated. The most amount of dynamical mass is generated for chiral
quarks. We also note that the dynamical quark mass M(p) should only be affected by vacuum
fermion loops at the percentage level, Ref. [3]. Hence, we do not expect much difference for the
constituent quark mass when using dynamical configurations.

The temporal part AT(p) vanishes if the additional gauge freedom with respect to space in-
dependent gauge transformations is not fixed. As in Ref. [3] we fix it to the Integrated Polyakov
Gauge. In this gauge AT(p) goes to small non-zero values for large momenta, see left-hand side
of Fig. 3. For small momenta the error bars are too large to make a precise statement. However, a
divergent behavior, as for the dressing functions fixed by Coulomb gauge, does not seem to occur.
It is more likely that a finite value is reached. A possible mixed component AD, which does not
appear at tree-level, also seems to vanish non-perturbatively, see right-hand side of Fig 3. Again,
in the infrared region the error bars are too large to make a precise statement.
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Figure 1: Spatial component AS(p) (l.h.s.) and scalar component B(p) (r.h.s) as functions of the lattice
momentum q for several quark masses and in the chiral limit.
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Figure 2: Dynamical mass function M(p) for several quark masses and in the chiral limit.

4.3 Dirac Low-Mode Removal

When chiral symmetry is artificially restored in the vacuum, the quark condensate 〈ψψ〉, the
dynamical quark mass M(p) and scalar dressing function B(p) vanish in the chiral limit. The
interesting question is, how the vector dressing function AS(p) is affected by chiral symmetry
restoration. We argue that if it still increases for small momenta, then it is likely that the dispersion
relation ω(p), Eq. (4.3), is still divergent for p→ 0. However, if it drops off, then such a divergence
is not possible. We note, that the simple mean-field Dyson-Schwinger equations suggest that AS(p)
is still divergent for setting M(p) = 0, Ref. [21]. If this picture can be transported to full QCD is
currently under investigation. First results show that the shape of AS(p) is indeed not significantly
different when removing the condensate and AS(p) still increases for small momenta. This would
give a clear picture of confinement after unbreaking of chiral symmetry in Coulomb gauge: the
Lorentz-vector dressing function AS(p) survives chiral symmetry restoration and is still infrared
divergent. The final results on this issue will be presented elsewhere [12].
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Figure 3: Temporal component AT(p) (l.h.s.) and mixed component AD(p) (r.h.s.) for several current quark
masses and in the chiral limit.

5. Summary and Outlook

Coulomb gauge offers a playground to study the interplay between confinement and chiral
symmetry breaking due to the relation between the infrared divergence of the quark propagator
dressing functions and the confinement properties of the theory. We have shown that on a 204 lattice
using quenched gauge field configurations the dressing functions increase for small momenta and
that dynamical mass generation sets in around 1 GeV, resulting in a constituent mass for chiral
quarks around 300 MeV. The next step is to extract the dressing functions when chiral symmetry
breaking is artificially removed by subtracting the low-mode part from the full quark propagator.
For chiral quarks the dynamical mass and scalar dressing function approach zero in such a phase.
However, first results show that the vector dressing function stays intact, which would give a clear
picture of confinement after unbreaking of chiral symmetry in Coulomb gauge. Then, to get a better
understanding of the divergence structure of the dressing functions, the continuum limit should be
explored. In addition, Coulomb gauge could also be suitable to study the effect of instantons on
the quark propagator, as done in Landau gauge [22], or to study the chiral symmetry properties of
adjoint quarks.
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