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We present results of the static three-quark potential and the force in SU(3) lattice gauge theory at
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multilevel algorithm. We investigate various cases that the three quarks are placed at the vertices
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one curve as a function of the Y -distance defined by the minimum extent of lines connecting all
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1. Introduction

The static three-quark potential is one of the typical quantities in QCD reflecting its SU(3)
gauge symmetry, which is relevant to heavy baryon spectroscopy, but its feature is less known
compared to the quark-antiquark potential. Lattice QCD simulations offer nonperturbative compu-
tation of the potential, and so far, the three-quark potential has been investigated by several groups,
where the “baryonic” Wilson loop as illustrated in Fig. 1 (left) has been computed as an extension
of the ordinary rectangular Wilson loop for the quark-antiquark potential [1, 2, 3, 4, 5, 6, 7].

All groups have obtained similar results to the quark-antiquark potential that the functional
form of the potential is described by the Coulombic term at short distances and a linearly-rising
confining term at long distances. However, they arrived at two different conclusions concerning the
underlying structure of the potential at long distances. One is the ∆-type structure [1, 2, 3, 4, 7],
and the other is the Y -type structure [5, 6]. The idea of the ∆-type structure originates from the
fact that the three-quark potential can be described effectively by the sum of the three two-body
potentials, which means that the ∆-shaped color flux-tube is formed among the three quarks. On
the other hand, the idea of the Y -type structure is from the fact that the three-quark potential is
well-fitted to the linear function of the distance that minimizes the total extent of lines connecting
the three quarks. This indicates that all color flux-tubes associated with the three quarks meet at a
junction called the Fermat point, which signals the presence of genuine three-body interaction.

Recently, the present authors have shown that the static three-quark potential can be inves-
tigated from the Polyakov loop correlation function (PLCF) [8], composed of spatially separated
three Polyakov loops as illustrated in Fig. 1 (right), by employing the multilevel algorithm [9, 10] at
zero temperature. As discussed in Ref. [8], the topologically Y -shaped spatial Wilson lines with a
junction in the baryonic Wilson loop may cause systematic effects to extract the ground state poten-
tial at long distances even if one uses smearing techniques [11], while there is no such a problem
in the PLCF. In fact, we have compared our result of the equilateral-triangle-shaped three-quark
potential from the PLCF with that from the baryonic Wilson loop [6] and found a distinct deviation
at long distances [8].

In this paper, we extend our previous computation of the three-quark potential from the PLCF.
By applying the multilevel algorithm extensively, we investigate the potential that the three quarks
are placed at the vertices not only of the equilateral triangles but also of the isosceles and the
right triangles, up to 3.1 fm with the ∆-distance and 1.8 fm with the Y -distance. We then find a
systematic behavior especially with the Y -distance such that all the potential data, except for the
cases such that the two of three quarks are very close to each other, fall into one curve. We also
compute the force among the three quarks with respect to the ∆- and Y -distances, and find that the
long distance behavior of the force with the Y -distance is the same as that of the quark-antiquark
system, indicating that they have the common string tension.

2. The three-quark potential from the PLCF

The three-quark potential is computed from the PLCF as follows. We consider SU(3) lattice
gauge theory in four dimensions with the lattice volume L3 × T and the lattice spacing a, and
impose periodic boundary conditions in all space-time directions. We first prepare the three-link
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Figure 1: The baryonic Wilson loop (left) and the baryonic PLCF (right).

correlators, a tensor product of the time-like link variables U4(x) placed at x = (x0,~x1), (x0,~x2) and
(x0,~x3) for x0 = 0,a,2a, ...,T −a,

T(x0,~x1,2,3)αβγδεζ ≡U4(x0,~x1)αβU4(x0,~x2)γδU4(x0,~x3)εζ , (2.1)

where Greek indices α,β ,γ,δ ,ε,ζ take the values from 1 to 3, respectively. Practically, a three-
link correlator is a complex matrix with 9× 9× 9 = 729 components. The multiplication law of
the three-link correlators of the adjacent time slices at x0 and x0 +a is

{T(x0,~x1,2,3)T(x0 +a,~x1,2,3)}αβγδεζ = T(x0,~x1,2,3)αλγρεσ T(x0 +a,~x1,2,3)λβρδσζ , (2.2)

where repeated indices are to be summed over. The three-link correlator acts on the color state
in the 3 ⊗ 3 ⊗ 3 representation of the SU(3) group |n;~x1,2,3〉αβγ , which is the eigenstate of the
hamiltonian H defined by the transfer matrix in the temporal gauge, T ≡ e−Ha, and then satis-
fies T(x0,~x1,2,3)αλβργσ |n;~x1,2,3〉αβγ = e−En(~x1,2,3)a|n;~x1,2,3〉λρσ , where n is the principal quantum
number and En(~x1,2,3) corresponds to the energies. Note that En(~x1,2,3) are common to all color
components of |n;~x1,2,3〉αβγ .

Using the three-link correlators, the operator for the baryonic PLCF is constructed as

TrP(~x1)TrP(~x2)TrP(~x3) = {T(0,~x1,2,3)T(a,~x1,2,3) · · ·T(T −a,~x1,2,3)}ααγγεε . (2.3)

By inserting the complete set of eigenstates 1 = ∑∞
m=0 |m;~x1,2,3〉〈m;~x1,2,3| at all time slices x0 =

0,a, ...,T −a, the expectation value is written as

〈TrP(~x1)TrP(~x2)TrP(~x3)〉 =
∞

∑
n=0

wne−En(~x1,2,3)T , (2.4)

with w0 = 1, which is guaranteed by construction. The ground state potential V (~x1,2,3)≡ E0(~x1,2,3)
is then extracted as

V (~x1,2,3) = − 1
T

ln〈TrP(~x1)TrP(~x2)TrP(~x3)〉+O(
1
T

e−(E1−E0)T ) , (2.5)

where the error terms of O( 1
T e−(E1−E0)T ) are already negligible at zero temperature. Note that if

one uses the Wilson loop, the weight factor wn is dependent both on the location of the three quarks
and the junction of the spatial Wilson lines so that the value of w0 is unknown a priori. Moreover,
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the error terms become of O(1
t e−(E1−E0)t) for the temporal extent of the Wilson loop t, which are

not easily suppressed for larger spatial separation of quarks, since t cannot be large practically.
There is also limitation such as t < T/2 due to the periodic boundary condition. In this sense, the
extraction of the potential from the PLCF is theoretically cleaner than that from the Wilson loop,
once the PLCF is computed accurately.

One problem is that the expectation values of the PLCF are extremely small at long distances,
which are immediately obscured by the statistical noise within the ordinary simulations. Using
the multilevel algorithm [9, 10], however, it is possible to overcome this problem. The idea is
to compute a desired correlation function, which may have an extremely small expectation value,
from the product of relatively large sublattice averages of its components, where the sublattices
are defined by dividing the lattice volume into several layers along the time direction. During the
computation of the sublattice averages, the spatial links at the sublattice boundaries are fixed. The
computation of the correlation function in this way is supported by the transfer matrix formalism
and is regarded as the hierarchical functional integral method.

As an example, let us consider a simple case that the lattice volume is divided into two sublat-
tices (Nsub = 2) at the time slice x0 = 0 and x0 = T/2. The number of the time slices in a sublattice
is Ntsl = T/(aNsub). We then compute the averages of {T(0,~x1,2,3) · · ·T(T/2− a,~x1,2,3)}αβγδεζ
and {T(T/2,~x1,2,3) · · ·T(T −a,~x1,2,3)}αβγδεζ and construct the operator by

TrP(~x1)TrP(~x2)TrP(~x3)

= [T(0,~x1,2,3) · · ·T(
T
2
−a,~x1,2,3)]αλγρεσ [T(

T
2

,~x1,2,3) · · ·T(T−a,~x1,2,3)]λαργσε , (2.6)

where [· · · ] represents taking the sublattice average. Note that fixing the spatial links at the sublat-
tice boundaries correspond to inserting two normalized fixed sources |φ1〉αβγ = ∑∞

n=0 an|n;~x1,2,3〉αβγ
and |φ2〉αβγ = ∑∞

m=0 bm|m;~x1,2,3〉αβγ at x0 = 0 and x0 = T/2, respectively, where an and bm are un-
known a priori but satisfy ∑∞

n=0 |an|2 = ∑∞
n=0 |bn|2 = 1. Then, Eq. (2.6) becomes

TrP(~x1)TrP(~x2)TrP(~x3) = Tr
[
〈φ1|T(0) · · ·T(

T
2
−a)|φ2〉

][
〈φ2|T(

T
2

) · · ·T(T −a)|φ1〉
]

= ∑
αλ

∑
γρ

∑
εσ

(
∞

∑
n=0

a∗nbne−En(~x1,2,3)(T/2) ·
∞

∑
m=0

b∗mame−Em(~x1,2,3)(T/2)

)
.(2.7)

If we take the average for different fixed sources at x0 = 0 and x0 = T/2 of other independent
gauge configurations, we obtain 〈TrP(~x1)TrP(~x2)TrP(~x3)〉 as in Eq. (2.4), since inserting the fixed
sources finally reduces to inserting the complete set.

At this point, it is worth noting that if T/2 is large enough so that the terms of O(e−(E1−E0)(T/2))
are negligible, which is usually the case at zero temperature, Eq. (2.7) further reduces to

TrP(~x1)TrP(~x2)TrP(~x3) = ∑
αλ

∑
γρ

∑
εσ

|a0|2|b0|2e−E0(~x1,2,3)T︸ ︷︷ ︸
independent of α,λ ,γ,ρ,ε,σ

= 36|a0|2|b0|2e−E0(~x1,2,3)T . (2.8)

In this case, the ground state potential E0(~x1,2,3) can be extracted even from “one” configuration,
where the energy E0(~x1,2,3) is independent of the color components of the intermediate states.

In general, the lattice volume can be divided into Nsub sublattices for Nsub ≥ 2, if the terms
of O(e−(E1−E0)(aNtsl)) are still negligible. If this is not the case, the sublattice averaging must be
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Figure 2: The spatial locations where the three Polyakov loops are placed (the three-quark location): the
equilateral- and the isosceles-triangle cases (left) and the right-triangle case (right).

carried out up to higher k-levels until the terms of O(e−(E1−E0)(akNtsl)) become negligible. Otherwise
the ground state energy cannot be extracted due to contamination from the excited states. In our
experience with the SU(3) Wilson gauge action, there is a critical minimal length of aNtsl to obtain
the ground state energy. We find the value aNtsl ' 0.38fm [12, 13, 14].

3. Numerical results

We carried out simulations using the standard Wilson gauge action in SU(3) lattice gauge
theory at β = 6.00 on the 244 lattice with the multilevel algorithm. The lattice spacing is a =
0.093 [fm], determined by the Sommer scale r0 = 0.50 [fm] [15]. One Monte Carlo update consisted
of 1 heatbath and 5 over-relaxation steps. The number of sublattice is Nsub = 6, which corresponds
to Ntsl = 4.

We investigated the three-quark potential and force for the cases that the three quarks are
placed at the vertices of the equilateral, the isosceles, and the right triangles, which are then plotted
as functions of two typical distances with the ∆- and Y -types, R∆ and RY , respectively, where R∆

is the sum of the extent of lines between the two of three quarks, while RY is the minimum extent
of lines connecting the three quarks via the Fermat point of the triangle. The spatial location of
the three quarks is shown schematically in Fig. 2. We distinguish the location of the three quarks
(the shape of the triangle) with the notation like “rrr”, “r11”, “r10”, etc. For example, “rrr” means
~x1 = (r,0,0), ~x2 = (0,r,0), ~x3 = (0,0,r), where r varies simultaneously, which is the equilateral
triangle case. “r11” is ~x1 = (r,0,0), ~x2 = (0,1,0), ~x3 = (0,1,0), which is the isosceles triangle
case. “r10” is~x1 = (r,0,0),~x2 = (0,1,0),~x3 = (0,0,0), which is the right triangle case, and so on.

In Fig. 3, we plot a typical history of the PLCF of “one” configuration for the “rrr” case as a
function of the number of internal sublattice updates Niupd (left) and the corresponding potential at
Niupd = 500000 as a function of RY (right), which is compared to the average of the potential from
nine independent configurations at the same Niupd. We find that the result from one configuration
coincides with the average, which means that it is possible to compute the expectation value even
from one configuration by tuning the parameters of the multilevel algorithm as explained in the
previous section.

In Fig. 4, we then show results of the three-quark potentials for various triangle cases as
functions of R∆ (left) and RY (right), respectively, from the same “one” configuration at Niupd =
500000 used in Fig. 3. The shapes of the potentials look quite similar to each other, but we find
a systematic behavior especially in the Y -type plot since all the potential data fall into one curve,
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Figure 3: A typical history of the PLCF of “one” configuration for the equilateral triangle case (left) and the
corresponding potential at Niupd = 500000 (right), which is compared to the average of the potential from
nine independent configurations at the same Niupd.
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Figure 4: The three-quark potentials as a function of the ∆-distance (left) and of the Y -distance (right). The
meaning of the notation such as “rrr”, “r11”, “r10”, etc. are explained in the text.

except for the cases such that the two of three quarks are very close to each other, which may be
due to short distance effects.

In Fig. 5, we show results of the three-quark forces with the ∆-type dV (R∆)
dR∆

(left), and the Y -type
dV (RY )

dRY
(right), respectively. The behaviors of the forces are again similar to each other as expected

from that of the potentials, but we find that the convergence property at long distances of the Y -type
plot is better than that of the ∆-type plot. Moreover, the “string tension” from the Y -type plot is
consistent with that of the quark-antiquark potential σa2 = 0.0468 at β = 6.00 [13]. We observe
the universal feature of the string tension in the Y -type plot as pointed out in Ref. [5, 6] without
fitting procedures.

4. Summary

We have computed the static three-quark potential and the force in SU(3) lattice gauge theory
at zero temperature from the Polyakov loop correlation function (PLCF) by employing the multi-
level algorithm. Compared to the use of the Wilson loop, there is no artificial junction of the spatial
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Figure 5: The three-quark force as a function of the ∆-distance (left) and of the Y -distance (right). The
meaning of the notation such as “rrr”, “r11”, “r10”, etc. are the same as that in Fig. 4.

Wilson lines for the three-quark source and sink in the PLCF, which is useful to obtain the ground
state potential with less systematic effects.

We have investigated various cases that the three quarks are placed at the vertices of the equi-
lateral, the isosceles, and the right triangles. We have found that all the potential data, except for the
cases such that the two of three quarks are very close to each other, can be explained by one curve
as a function of the Y -distance defined by the minimum extent of lines connecting all three quarks
via the Fermat point of the triangle. We have also computed the three-quark force with respect to
the ∆- and Y -distances, and have found that its behavior at long Y -distances is quantitatively the
same as that of the quark-antiquark force.

The three-quark potential for other cases such as the obtuse triangles can also be investigated
along this line, which will be presented in our forthcoming paper.
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