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We study the phase structure of SU(2) gauge-Higgs model in two dimensions using lattice simu-

lations. We show the result for the plaquette expectation value, static potential, and W propagator.

Our results suggest that a confinement-like region and a Higgs-like region appear even in two di-

mensions. The behavior of the plaquette expectation value is consistent with a smooth cross-over

in accordance with the Fradkin-Shenker-Osterwalder-Seiler theorem. In the confinement-like re-

gion, the static potential seems to rise linearly with string breaking at large distances, while in the

Higgs-like region there seems to be a massive behavior which means that the BEH mechanism

occurs. The correlation length obtained from the W propagator has a finite maximum between

these phases, which supports no second-order phase transition. Based on these results, we suggest

that there is no phase transition in two dimensions.
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1. Introduction

The Brout-Englert-Higgs mechanism (BEH mechanism), where the gauge boson becomes
massive due to gauge symmetry breaking, is a common phenomenon extending from particle
physics to condensed matter physics [1]. In a superconductor, the Abelian BEH mechanism, known
as the Meissner effect, occurs and in the standard model, the non-Abelian Higgs mechanism occurs.

The Higgs phenomenon on lattice has also been studied from the perspective of the confinement-
Higgs behavior [2, 3, 4, 5, 6, 7, 8, 9]. In the SU(2) gauge-Higgs model, the confinement-like region
and the Higgs-like region appear in four dimensions, which may be connected analytically ac-
cording to the Fradkin-Shenker-Osterwalder-Seiler theorem [2, 3]. A characteristic behavior in the
confinement-like region is that the static potential between the colored charges rises linearly un-
til string breaking by pair production, while in the Higgs-like region it is of Yukawa type with a
massive gauge boson [6, 10].

The case of two dimensions is of interest from the theoretical viewpoint. Because of the
Coleman theorem and the Hohenberg-Mermin-Wagner theorem [11, 12], Nambu-Goldstone bosons
do not appear and phase transitions do not occur. However, in the Higgs case, the Nambu-Goldstone
bosons are absorbed by the gauge bosons and thus there are no massless bosons and these theorems
do not apply.

In this contribution, we investigate the phase structure of the SU(2) gauge-Higgs model in two
dimensions numerically. We show the gauge-invariant quantities such as the plaquette expectation
value, static potential and W-propagator.

2. SU(2) gauge-Higgs model on lattice

The lattice action of the SU(2) gauge-Higgs model with the fixed length of the Higgs field is
given by

S= β ∑
P

(
1− 1

2
TrUP

)
− γ

2 ∑
µ ,x

Tr
[
φ†(x)Uµ(x)φ(x+ µ̂)

]
(2.1)

with Uµ(x) ∈ SU(2)(µ = 1,2) the link-variable for the gauge field,UP ∈ SU(2) the plaquette-
variable, andφ(x) ∈ SU(2) the Higgs field of the frozen length. This action, with frozen length of
the Higgs fields, is formally derived from the SU(2) Higgs-Kibble model,

Sl = β ∑
P

(
1− 1

2
TrUP

)
− 1

2 ∑
µ,x

(
ϕ†(x)Uµ(x)ϕ(x+ µ̂)+c.c.

)
+∑

x
λ ′ (ϕ†(x)ϕ(x)− γ

)2
,

with ϕ(x) = t(ϕ1(x),ϕ2(x)) in the SU(2) fundamental representation. By rescalingϕ(x) by ϕ(x) =
γ1/2ϕ̃(x), and taking the limitλ ′ → ∞ with fixed γ, this action formally reduces to Eq.(2.1) with
the SU(2) matrix,

φ(x) =

(
ϕ̃∗2(x) ϕ̃1(x)
−ϕ̃∗1(x) ϕ̃2(x)

)
. (2.2)

In these models, the BEH mechanism occurs at the classical level, although whether it really occurs
or not depends onβ andγ [2, 5, 6, 8].
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3. Plaquette expectation value

We show the plaquette expectation value to investigate if a phase transition appear or not. The
plaquette expectation value is given by

⟨P⟩ ≡ 1
2
⟨TrUP⟩ (3.1)

with UP the plaquette-variable.
In Fig.1, we give the two-dimensional result atβ = 7.99 and 120 on 2562. The plaquette

expectation values at bothβ = 7.99 and120 increase smoothly with increasingγ in the region
5 <

∼ γ <
∼ 9 in contrast to the gauge-dependent order parameter [9]. We also investigated the volume-

dependence for several values ofγ between2562 and5122 lattice and no difference was found.
When we compareβ = 7.99 with β = 120, the behavior of the plaquette expectation value

seems to become smooth asβ increases and thus a transition might not appear in the region of
β > 7.99. In fact, if we take the limit ofβ → ∞, we findUP → 1, corresponding to a pure gauge.
In this case, after gauge transformation, the action corresponds to the two dimensional Heisenberg
model, where a transition does not appear.

Furthermore, according to the Fradkin-Shenker-Osterwalder-Seiler theorem, no transition at
small β appears for gauge-invariant quantities. Therefore also in the region ofβ < 7.99, there
might not be a transition, but a smooth cross-over. This is consistent with the recent work of Cubero
and Orland [22], who find that there is no symmetry-breaking Higgs phase in the continuum theory.
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Figure 1: The plaquette expectation value atβ = 7.99and120on2562

4. Static potential

In two dimensional pure Yang-Mills theory, the Wilson-loop potential is exactly linear. On the
other hand, if the BEH mechanism occurs, the potential behaves like

V(r)∼−
∫

dp
e−ipr

p2+m2 ∼−e−mr, (4.1)

with m the mass of vector boson, because the gauge boson becomes massive.
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We calculated the static potentialV(r) using the Wilson loop on10242 lattice atβ = 120and
γ = 2 and8 as shown in FIG.2. The static potential is fitted by the form,

−Ae−mr+σ r +B, (4.2)

with the parameterA,B,mandσ in the region ofr/a< 20, and the results are summarized in Table
1.
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Figure 2: The static potential atβ = 120 andγ = 2 and8 in lattice units. The dashed lines show the fit
results.

In FIG. 2, the potential atγ = 2 shows the linear potential and the string breaking atr/a∼ 20,
while the potential ofγ = 8 does not show the linear potential, but behaves like−e−mr. Thusγ = 2
corresponds to confinement-like region andγ = 8 corresponds to Higgs-like region. Furthermore
because of string breaking, the difference between the regions may be quantitative (though strong),
which indicates that these regions are connected analytically.

Table 1: The fit results of the static potential by−Ae−mr+σ r +B for r/a< 20.

γ m σ A B χ/N

2 0.19(7) 0.01221(5) 0.0015(7) 0.0015(7) 0.3
8 0.207(4) 7(9)×10−5 0.061(1) 0.060(1) 1.2

The fit results support the appearance of these regions. Atγ = 2 a finite string tension appears,
which indicates the confinement-like region. Though the mass parameterm does not seem to be
small, the prefactorA is small. Therefore the first term in Eq. (4.2) is negligible compared with the
second termσ r. At γ = 8, the string tensionσ is almost0, which means that the potential does not
show a linear slope.

5. W propagator

Finally, we show another gauge-invariant quantity, the W propagator, defined by

Dµν(x−y) =
1
3 ∑

a=1,2,3

⟨
Wa

µ (x)W
a
ν (y)

⟩
, (5.1)
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where

Wa
µ (x)≡

1
i
Tr
[
τa{φ†(x)Uµ(x)φ(x+ µ̂)

}]
(5.2)

with τa SU(2) generator. Note that the W field is gauge invariant and the effective mass for the
transverse part of the W field corresponds to the two-dimensional analog of a1− state [6, 8], which
is a singlet state with negative parity. This propagator coincides with the gluon propagator in the
unitary gauge,φ(x) = 1 and thus it is easily calculated.

The effective mass of the W field is estimated from the linear slope of the logarithm of the
propagator at zero-spatial-momentum,

D0
µν(t) =

1
3V ∑

a,x1,y1

⟨
Wa

µ (x1, t)W
a
ν (y1,0)

⟩
(5.3)

with the two dimensional volumeV. The effective mass of the transverse part is given byD0
11(t)

and that of the longitudinal part is given byD0
22(t) [19]. In this contribution, we estimated only the

transverse effective mass.
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Figure 3: The propagator at zero-spatial-momentum,D0
11(t), on 2562 at β = 120 andγ = 2,4 and8 in

lattice units.

We showD0
11(t) on2562 lattice atβ = 120andγ = 2,4 and8 in FIG.3. The logarithm of these

zero-spatial-momentum propagators seems to be almost linear or convex upwards, which indicates
the preservation of the Kallen-Lehmann representation, in contrast with the gluon propagator in
other gauges like the Landau gauge and MA gauge [20]. In particular, the two dimensional gluon
propagator in the Landau gauge shows remarkable violation of the Kallen-Lehmann representation
and goes to zero at zero momentum [9, 17, 18, 23].

In TABLE. 2, we summarize forD0
11(t) the fit result ofADe−mDt with the parametersAD and

mD for t/a= 4−15. The mass parametermD in lattice units decreases in the region ofγ < 5, and
increases in the region ofγ > 5. In other words the mass parameter shows minimum atγ ≃ 5,
which means that the correlation is maximum. We also show the volume-dependence of the mass
parameters in TABLE.2 and there seems to be almost no volume-dependence between2562 and
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Table 2: The fit results of the zero-spatial-momentum propagator byADe−mDt for t/a= 4−15 at β = 120
and on2562 and5122.

γ mD AD L2 χ/N

2 0.36(3) 0.07(1) 256 0.8
4 0.243(4) 0.078(1) 256 0.5
5 0.240(2) 0.069(1) 256 0.1
6 0.265(5) 0.069(2) 256 0.9
8 0.282(1) 0.058(1) 256 0.08
10 0.304(2) 0.051(1) 256 0.2
4 0.243(2) 0.077(1) 512 1.0
5 0.237(3) 0.067(1) 512 0.6
6 0.267(2) 0.067(1) 512 1.0

5122 atγ = 4,5and6. The minimum does not seem to go to zero with increasing volume. Therefore
it is not a second-order phase transition, consistent with the result of the praquette expectation
value.

6. Summary

We have shown the numerical result of the two dimensional phase structure in SU(2) gauge-
Higgs model. We have carried out the Monte Carlo simulation and calculated gauge-invariant
quantities such as the plaquette expectation value atβ = 7.99 and120, static potential and the W
propagator atβ = 120.

The plaquette expectation value shows a smooth cross-over between confinement-like re-
gion and a Higgs-like region atβ = 7.99 and120 which is consistent with the Fradkin-Shenker-
Ostervalder-Seiler theorem. It indicates no phase transition in two dimensions. The static potential
shows a linear rise and string breaking atγ = 2, and behaves like a two-dimensional Yukawa poten-
tial at γ = 8. The effective mass of the W propagator in lattice units has a minimum atγ ≃ 5 which
does not go to zero with increasing volume. These results support that there is a BEH mechanism
in the region ofγ > 5 and a confinement-like region and a Higgs-like region appear even in two
dimensions.
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