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discuss a recent proposal to implement @(€) model on optical lattices using®Rb and*'K
Bose-Bose mixture of cold atoms.
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1. Introduction

Recent advances in the technology of engineering many-body systentoldititoms trapped
in optical lattices allow for building quantum simulators,, systems with model quantum Hamil-
tonians, where types of interactions can be customized and their strengtls lusystems, whose
Hamiltonians resemble or approximate well, for example, condensed matter @ ttige the-
ory models, can be realized experimentally, they would serve as “anatoguters”, providing
answers by quantum mechanical measurements, rather than convepédunabative or Monte
Carlo techniques (routinely being done nowadays on digital computees)eriR proposals along
these lines are discussed in Refd. [[1]%] 8] 4, 5].

For lattice gauge theory, in particular, such program of building quantomalators requires
several steps. First, most lattice calculations utilize the path integral quaminatioe imaginary-
time Lagrangian formulation, while cold atom systems in a lab evolve accordingitogiantum
Hamiltonians in real time. Therefore, one needs to revive the Hamiltonianagipto lattice gauge
theory, pioneered by Kogut and Susskind[jn [6]. Second, cold atomgticadlattices reside in a
periodic potential, similar to the one that electrons feel in a crystalline solids, Tdme expects that
models used in condensed matteg., the Hubbard model, would be the closest ones to typical
model Hamiltonians that can be realized on optical lattices. For this reasonesus to find
suitable mappings from lattice gauge theory models to condensed matter-likefogateway to
this is an observatiof][7] that the Fermi-Hubbard model 8¢R) lattice gauge theory share the
same strong-coupling expansion. And last, but not least, the model Hamilsostiauld be simple
enough to be feasible for experimental realization.

2. Gauge-Higgs models

Let us consider thel (1)-Higgs model with the action:

S=BY T ReTUgw] +2 S (@la—1)°+5 ala

X VU X

d
N K;Zl [cg:rux#qg@rqugaﬂu)zu@}. 2.1)

The path integral quantization is then
Z— /D(pTD(pDUe*S. 2.2)

At the lowest order of the strong-coupling expansion weGset0 and carry oubDU integra-
tion. For a particular linkJy , we have an integral:

J= /dU exp{k (p'Uy+y'ug)}, (2.3)

where for simplicity we defin® = Uy ,, ¢ = @ andy = @, ;. The measure is such thatlU = 1
and [UdU =0.
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If we expand the exponent, only terms that have same powérasfdU ' produce a non-zero
contribution. The expansion is:

[o0)

— Zo(n%)z (k20" puy)" =10 <2K\/W) : (2.4)

Thus, after integrating the gauge field we have the following partition function

d
Z= /D(pTDgoexp{/\ S@ea-12-Tda+S S Inl <2K\/@I@<(g:r+ﬂ(p,(+ﬂ> } (2.5)
X X X pu=1

At small k we can keep the first non-trivial order only and we hav®@?*):

d
ZgrT = /DCPTD(PE‘XD{— YA (@ -1+ @l —k? > ‘Bj@(@jw@w]}' (2.6)
u=1

X

If we write @ = |¢x|€%, we see that the Nambu-Goldstone mofiebave completely disappeared
from the B = 0 effective action which depends only on the “meson” operitee= @/ ¢. The
integration over the gauge fields generates powekd,M,_ ;; in the effective action.

MyM,, ; terms are also generated in the same approximatioB4gN) gauge theories with
fermions. In that case, the meson operatoMg = (s J)x but in addition we have baryon-baryon
interactiondeBl+ﬂwith the baryon operatdy = &, i, Y iz ... N [LJ].

It has been pointed oUi][7] that the Heisenberg Hamiltonian, which appéaecond order in
degenerate perturbation theory of the Fermi-Hubbard model with straitgeapulsion:

H=J5 S-S5 with J=4/U (2.7)

<>

can also be derived in the strong coupling limit oS8d (2) lattice gauge theory. Using =

111 045 fig, imposing the constrairf{’, f; = 1 and a particle-hole transformation, one obtains

J ; ' Jd 1

The orderf corrections to the effective action f&J (N) theories with fermions are being
studied.e.g. Ref. [I]]. In the Abelian case, one can use tensor renormalizatiop gnethods[[72]
to calculate the first correction to the partition function due to the plaquette étiteralt has the
form

cos( 6 — 6y)l1 (2| %[ @) (2.9)

<xy>epl.

which generates terms of the form<xy>ep|,((g:rqg,+ h.c.) in the effective action. Note that the
Nambu-Goldstone modes have reappeared. We now turn to a simpler madeggome features
with the U (1)-Higgs model to illustrate how it can be connected to models realized on optical
lattices (see Ref[J1] for more details).
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3. Classical O(2) model in 1+1 dimension

The partition function of the model is

d6uxt) s
z_/(ﬂ —es, 3.1)

xt)
S=-B ) cogOxrr1)— Oty —1H) =B Y coHOxi1t) — Oxty) (3.2)
(xt) (x)

wherep is the chemical potential. The sites of the rectangMax N; lattice are labeled ast)
and we assume periodic boundary conditions in space and time. Wgtakes, and obtain the
time continuum limit. To quantize the model we prométevariables to operators and arrive at
the Hamiltonian connecting quantum rotors on a lattice \@jthcting as the coupling between the
spatial sites: .

H= % |:(2X) — ﬂ Z l:(x) — j; COie(x) - Q(y)) s (33)

X X xy>

withU =1/(Ba), it = u/aandJ = B«/a, the sum extending over sitesnd nearest neighbotsy)
of the space lattice aralis a lattice spacing. The operator= —id /08 is similar to the angular
momentum operator. Its eigenstatés) = m/m) span an infinite dimensional Hilbert space and
takes all positive and negative integer values.

For realistic implementations with cold atoms, it is convenient to consider Hamiltowiéims
operators that live in a finite rather than infinite Hilbert spdL€][8, 9]. @f® model is the simplest,
nontrivial, model where Abelian, quantum link inspired, projections camtieduced, and we
illustrate the strategy below. i

The third interaction term in the Hamiltoniah (3.3) can be written in terms ¥ operators.
They satisfy the following algebra:

L, = +e0, %10 —1, (3.4)

From the commutation relations we find tiet® act as ladder operators:
Le®|m) = (+€9 4 0L ) |m) = (m1)e"*|m), (3.5)
et m) = [m+1), (mEim=+1) = (meF e ¥m) =1, (3.6)

with the transition matrix elements equal to 1.
Consider now the interaction term connecting skesdy:

A A A 1¢ .4 =2 P
= — = = {eBn=8y) 4 g1 —by)
Cy= COie(x) 90,)) 5 {e' Ww+e y } . (3.7)
The Hilbert space in this case is
My, my) = M) @ |my). (3.8)
and the matrix elements @, can be easily found from
A 1
ColMemy) =5 (IMc—1,my+1) +[mc+1,my —1)). (3.9)
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In the |my, m,) basis theC,, operator is an infinite matrix that has a constant above and below the
main diagonal, with all other matrix elements equal to 0. We need to approximate fthitein
matrix with a finite one. We can choose a maximum vatgx and truncate the matrix keeping
only —mmax < My < Myax €ntries. Such an approximation converges to the origi@a'h the limit
Mmax — 0, however, it does not fully respect the original algelra] (3.4). Thisloa seen, for
instance, by acting wit@®e % on the state of lowesh: this gives 0 in contradiction with the
identity e 10 =1,

Alternatively, we can look for an approximation that respects the origigabaa with a pos-
sible expense of less accurately reproducing the matrix eIemeé;;;.dlfhe structure oéxy looks
very similar to the action of the raising and lowering operatsiof the angular momentum alge-
bra, which is also similar td (3.4). Moreover, in that case one naturally kasyux. Thus, one
can argue that the truncated opereﬁgrcan be approximated as the one madé®bperators in
the representatioh= myax. In this case the basis states are the spherical harmpnicgind we
replacel. with L% and the original raising and lowering operatet& with [ *:

(L2, [F) = +0*. (3.10)

The matrix element of the raising operator is defined as:

,mLT ), m=1) = /(1 +m)(I —m+1). (3.11)

Considerl = 1 case. We have three statas= —1,0,1 and all the matrix elements are equal
to /2, following from (3.11L), and, thus, the truncated operator can besepted exactly. (This is
no longer true for higher representations.)

We embed the original basjs), |m| < 1 into the spherical harmonics baglis= 1, m) (with
the identificatior 2= L we have the correct eigenvalug$lm) = m|Im)) and represent the original
Cyy Operator with:

A AT At
Co=A(LiL5 + L)) (3.12)

By acting on, for examplély = 1, my = 0;ly = 1,m, = 0) state we can easily deduce tiat 1/4.
We have then the following Hamiltonian:

~ J ~y 2 . J NI
: _ZZO‘(X)) _“ZL(X)_Z )+LX)L(y)> : (3.13)

4. Two-species Bose-Hubbard model

The Hamiltonian [(3.13) of th®(2) model can be realized in optical lattice experiments if an
appropriate mapping to the Bose-Hubbard model can be found. Iniegptiee positive (negative)
eigenvalues of? as the charges of particles (antiparticles) states associated with a congiéex sc
field, it is natural to consider a two-species Bose-Hubbard Hamiltonianlattiee. We use the
following parameterization:

U
H=— %(taalay+tbblby+ he)=S (H+8a)ni+Y 7"n§j’(n§’ —1)+W Y ninf+ ; Vangng
Xy X,a X,a X <xy a
4.1)
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with a = a, b indicating the two different species? = afa, andn? = blb, the number operators,
and|n2,n2) the corresponding on-site basis. It is possible to adjust the chemicatiptstém order
to set(ny) = ("2 +n) = 2. In the limit whereJ, = U, = W are very large and positive, the on-site
Hilbert space can then be restricted to the states satisfiyirg2 at each site. All the other states
(with ny # 2) belong to high-energy sectors that are separated from this oneehyiesof order
U. The three statef2,0), |1,1) and|0,2) correspond to the three states of the spin-1 projection
considered above.

Let us restrict the model to just two site@andy for the moment. The Hilbert space consists
of nine states:

|nX,nX,ny by = |nX,n>®|n";,n§> with [n? nP) =12,0),/1,1),]0,2), i=xy. (4.2

ForU,W > t, we consider hopping as perturbation, split the Hamiltonian as:

Ho =3 (H+Da)n Zn (g -1 +WS b+ 5 Vaniny, (4.3)
X,a X (xya
= — %(taaxay+tbblby+h.c. , (4.4)
Xy,

and proceed with the degenerate perturbation theory. (In the regimeoafysbinsite repulsion
Uo > (Up—W),V, this basis is approximately degenerate.)

At zeroth order irty, the matrix elements of the effective Hamiltonian are given by the action
of various number operators on the basis states. At first order thérgaepm generates transitions
into the states with higher occupation, that are more energetically costly dugetta These are
“virtual” states and in the chosen= 2 subspace the first order contribution is zero. At the second
order transitions to the virtual states and back are allowed, and, thuspppen generates non-
zero non-diagonal matrix element.i#{. Overall, the terms generated at the second order can be
mapped ontd.?, L* operators. The effective second order Hamiltonian (generalizedtidgrary
number of sites and arbitrary fixed occupation number):

Vo t2 W t2 —talp
A= (305~ 0) 2 0y 2 Gk ki) + VoW 3
2 Uo 2 U e X)) Uo o) () =( X
pn p(n+1t&\ (pn p(n p(n+ 1)t ,
P, BT NV +Ap — E L& 4.
+ [(2 atDa Us 5 Vb (4.5)

wherep is the number of neighbors amdis the occupationf{= 2, n = 2 in our case).L is the
angular momentum operator in representatig®.

Notice that the effective Hamiltoniaff (#.5) is very similar[lo (B.13) but containesxral %[
term. By choosing the hopping amplitutle= \/VyUp/2 it can be removed and we have

_U Z \2_ 75 z X | X y v
Hett =75 2 (L) =R Ly *J%('—(x)'-(y) +Liby): (4.6)

where the coefficients are given by=2(Uy —W), It = —(Aa —Va) + (8 — V), andd = V.

This two-species Bose-Hubbard model can be realized iR and*'K Bose-Bose mixture
where an inter-species Feshbach resonance is accessible. Theaddiéslproposal are discussed
in Ref. [1].
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5. Conclusion

In summary, we have considered tH¢1)-Higgs model in two dimensions. Neglecting the
plaquette interactions, we have provided an effective theory wheredii&hles are integrated out,
producing 4-field operator. In this approximation, the Nambu-Goldstoneembave disappeared
but can be reintroduced at first order in the plaquette interactions. @lirggto provide a proof of
principle that some approximate “analog computer" forlth{¢)-Higgs model can be build using
cold atoms trapped in an optical lattice. As a first step in this direction, we disdus recent
proposal to implement th®(2) model (describing the Nambu-Goldstone modes without gauge
fields) on optical lattices using®Rb and*'K Bose-Bose mixture of cold atoms.
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