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We discuss theU(1)-Higgs model in two dimensions in the strongly coupled regime. If we neglect

the plaquette interactions, we generate an effective theory where link variables are integrated out,

producing 4-field operators. Plaquette interactions can berestored order by order as in recent

calculations with staggered fermions. In the case of aSU(2) gauge theory with fermions, this

strong coupling expansion can be related to the strong coupling expansion of Fermi-Hubbard

models possibly implementable on optical lattice. We wouldlike to provide a similar construction

relating theU(1)-Higgs model to some Bose-Hubbard model. As a first step in this direction, we

discuss a recent proposal to implement theO(2) model on optical lattices using a87Rb and41K

Bose-Bose mixture of cold atoms.
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1. Introduction

Recent advances in the technology of engineering many-body systems withcold atoms trapped
in optical lattices allow for building quantum simulators,i.e., systems with model quantum Hamil-
tonians, where types of interactions can be customized and their strengths tuned. If systems, whose
Hamiltonians resemble or approximate well, for example, condensed matter or lattice gauge the-
ory models, can be realized experimentally, they would serve as “analog computers”, providing
answers by quantum mechanical measurements, rather than conventionalperturbative or Monte
Carlo techniques (routinely being done nowadays on digital computers). Recent proposals along
these lines are discussed in Refs. [1, 2, 3, 4, 5].

For lattice gauge theory, in particular, such program of building quantum simulators requires
several steps. First, most lattice calculations utilize the path integral quantization in the imaginary-
time Lagrangian formulation, while cold atom systems in a lab evolve according to their quantum
Hamiltonians in real time. Therefore, one needs to revive the Hamiltonian approach to lattice gauge
theory, pioneered by Kogut and Susskind in [6]. Second, cold atoms in optical lattices reside in a
periodic potential, similar to the one that electrons feel in a crystalline solid. Thus, one expects that
models used in condensed matter,e.g., the Hubbard model, would be the closest ones to typical
model Hamiltonians that can be realized on optical lattices. For this reason oneneeds to find
suitable mappings from lattice gauge theory models to condensed matter-like ones. A gateway to
this is an observation [7] that the Fermi-Hubbard model andSU(2) lattice gauge theory share the
same strong-coupling expansion. And last, but not least, the model Hamiltonians should be simple
enough to be feasible for experimental realization.

2. Gauge-Higgs models

Let us consider theU(1)-Higgs model with the action:

S = −β ∑
x

∑
ν<µ

ReTr
[
Ux,µν

]
+λ ∑

x

(
φ†

x φx −1
)2

+∑
x

φ†
x φx

− κ ∑
x

d

∑
µ=1

[
φ†

x Ux,µφx+µ̂ +φ†
x+µ̂U†

x,µφx

]
. (2.1)

The path integral quantization is then

Z =
∫

Dφ†DφDUe−S. (2.2)

At the lowest order of the strong-coupling expansion we setβ = 0 and carry outDU integra-
tion. For a particular linkUx,µ we have an integral:

J ≡
∫

dU exp
{

κ
(
φ†Uψ +ψ†Uφ

)}
, (2.3)

where for simplicity we defineU ≡Ux,µ , φ ≡ φx andψ ≡ φx+µ̂ . The measure is such that
∫

dU = 1
and

∫
UdU = 0.
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If we expand the exponent, only terms that have same power ofU andU† produce a non-zero
contribution. The expansion is:

J =
∞

∑
n=0

1
(n!)2

(
κ2φ†φψ†ψ

)n
= I0

(
2κ

√
φ†φψ†ψ

)
. (2.4)

Thus, after integrating the gauge field we have the following partition function:

Z =
∫

Dφ†Dφ exp

{
−λ ∑

x
(φ†

x φx −1)2−∑
x

φ†
x φx +∑

x

d

∑
µ=1

ln I0

(
2κ

√
φ†

x φxφ†
x+µ̂φx+µ̂

)}
. (2.5)

At small κ we can keep the first non-trivial order only and we have atO(κ4):

ZEFT =
∫

Dφ†Dφ exp

{
−∑

x
[λ (φ†

x φx −1)2 +φ†
x φx −κ2

d

∑
µ=1

φ†
x φxφ†

x+µ̂φx+µ̂ ]

}
. (2.6)

If we write φx = |φx|eiθx , we see that the Nambu-Goldstone modesθx have completely disappeared
from the β = 0 effective action which depends only on the “meson” operatorMx = φ†

x φx. The
integration over the gauge fields generates powers ofMxMx+µ̂ in the effective action.

MxMx+µ̂ terms are also generated in the same approximation forSU(N) gauge theories with
fermions. In that case, the meson operator isMx = ψ̄xψx but in addition we have baryon-baryon
interactionsBxB†

x+µ̂with the baryon operatorBx = εi1i2...iN ψ i1
x ψ i2

x . . .ψ iN
x [10].

It has been pointed out [7] that the Heisenberg Hamiltonian, which appears at second order in
degenerate perturbation theory of the Fermi-Hubbard model with strong onsite repulsion:

H = J ∑
<ij>

Si ·Sj with J = 4t2/U (2.7)

can also be derived in the strong coupling limit of aSU(2) lattice gauge theory. UsingSi =
1
2 f †

iασαβ fiβ , imposing the constraintf †
iα fiα = 1 and a particle-hole transformation, one obtains

H =
J
8 ∑

x,µ̂

[
MxMx+µ̂ +2(B†

xBx+µ̂ +B†
x+µ̂Bx)

]
− Jd

4 ∑
x

(
Mx −

1
2

)
(2.8)

The orderβ corrections to the effective action forSU(N) theories with fermions are being
studied,e.g. Ref. [11]. In the Abelian case, one can use tensor renormalization group methods [12]
to calculate the first correction to the partition function due to the plaquette interaction. It has the
form

∏
<xy>∈pl.

cos(θx −θy)I1(2κ|φx||φy|) (2.9)

which generates terms of the form∏<xy>∈pl.(φ†
x φy + h.c.) in the effective action. Note that the

Nambu-Goldstone modes have reappeared. We now turn to a simpler model sharing some features
with the U(1)-Higgs model to illustrate how it can be connected to models realized on optical
lattices (see Ref. [1] for more details).
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3. Classical O(2) model in 1+1 dimension

The partition function of the model is

Z =
∫

∏
(x,t)

dθ(x,t)

2π
e−S , (3.1)

S = −βt ∑
(x,t)

cos(θ(x,t+1)−θ(x,t)− iµ)−βx ∑
(x,t)

cos(θ(x+1,t)−θ(x,t)), (3.2)

whereµ is the chemical potential. The sites of the rectangularNx ×Nt lattice are labeled as(x, t)
and we assume periodic boundary conditions in space and time. We takeβt ≫ βx and obtain the
time continuum limit. To quantize the model we promoteθ variables to operators and arrive at
the Hamiltonian connecting quantum rotors on a lattice withβx acting as the coupling between the
spatial sites:

Ĥ =
Ũ
2 ∑

x
L̂2

(x)− µ̃ ∑
x

L̂(x)− J̃ ∑
〈xy〉

cos(θ̂(x)− θ̂(y)) , (3.3)

with Ũ = 1/(βta), µ̃ = µ/a andJ̃ = βx/a, the sum extending over sitesx and nearest neighbors〈xy〉
of the space lattice anda is a lattice spacing. The operatorL̂ = −i∂/∂θ is similar to the angular
momentum operator. Its eigenstatesL̂|m〉= m|m〉 span an infinite dimensional Hilbert space andm
takes all positive and negative integer values.

For realistic implementations with cold atoms, it is convenient to consider Hamiltonianswith
operators that live in a finite rather than infinite Hilbert space [8, 9]. TheO(2) model is the simplest,
nontrivial, model where Abelian, quantum link inspired, projections can beintroduced, and we
illustrate the strategy below.

The third interaction term in the Hamiltonian (3.3) can be written in terms ofe±iθ̂ operators.
They satisfy the following algebra:

[L̂,e±iθ̂ ] = ±e±iθ̂ , eiθ̂ e−iθ̂ = 1. (3.4)

From the commutation relations we find thate±iθ̂ act as ladder operators:

L̂e±iθ̂ |m〉 =
(
±e±iθ̂ + e±iθ̂ L̂

)
|m〉 = (m±1)e±iθ̂ |m〉, (3.5)

e±iθ̂ |m〉 = |m±1〉, 〈m±1|m±1〉 = 〈m|e∓iθ̂ e±iθ̂ |m〉 = 1, (3.6)

with the transition matrix elements equal to 1.
Consider now the interaction term connecting sitesx andy:

Ĉxy ≡ cos(θ̂(x)− θ̂(y)) =
1
2

{
ei(θ̂(x)−θ̂(y)) + e−i(θ̂(x)−θ̂(y))

}
. (3.7)

The Hilbert space in this case is
|mx,my〉 = |mx〉⊗ |my〉. (3.8)

and the matrix elements of̂Cxy can be easily found from

Ĉxy|mx,my〉 =
1
2

(|mx −1,my +1〉+ |mx +1,my −1〉) . (3.9)
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In the |mx,my〉 basis theĈxy operator is an infinite matrix that has a constant above and below the
main diagonal, with all other matrix elements equal to 0. We need to approximate this infinite
matrix with a finite one. We can choose a maximum valuemmax and truncate the matrix keeping
only −mmax 6 mi 6 mmax entries. Such an approximation converges to the originalĈxy in the limit
mmax → ∞, however, it does not fully respect the original algebra (3.4). This can be seen, for
instance, by acting witheiθ̂ e−iθ̂ on the state of lowestm: this gives 0 in contradiction with the
identity eiθ̂ e−iθ̂ = 1.

Alternatively, we can look for an approximation that respects the original algebra with a pos-
sible expense of less accurately reproducing the matrix elements ofĈxy. The structure of̂Cxy looks
very similar to the action of the raising and lowering operatorsL̂± of the angular momentum alge-
bra, which is also similar to (3.4). Moreover, in that case one naturally hasl = mmax. Thus, one
can argue that the truncated operatorĈxy can be approximated as the one made ofL̂± operators in
the representationl = mmax. In this case the basis states are the spherical harmonics|lm〉 and we
replaceL̂ with L̂z and the original raising and lowering operatorse±iφ̂ with L̂±:

[L̂z, L̂±] = ±L̂±. (3.10)

The matrix element of the raising operator is defined as:

〈l,m|L+|l,m−1〉 =
√

(l +m)(l −m+1). (3.11)

Considerl = 1 case. We have three states,m = −1,0,1 and all the matrix elements are equal
to

√
2, following from (3.11), and, thus, the truncated operator can be represented exactly. (This is

no longer true for higher representations.)
We embed the original basis|m〉, |m| 6 1 into the spherical harmonics basis|l = 1,m〉 (with

the identification̂Lz ≡ L̂ we have the correct eigenvaluesL̂z|lm〉= m|lm〉) and represent the original
Ĉxy operator with:

ˆ̃Cxy = A
(

L̂+
(x)L̂

−
(y) + L̂−

(x)L̂
+
(y)

)
. (3.12)

By acting on, for example,|lx = 1,mx = 0;ly = 1,my = 0〉 state we can easily deduce thatA = 1/4.
We have then the following Hamiltonian:

Ĥ =
Ũ
2 ∑

x

(
L̂z

(x)

)2
− µ̃ ∑

x
L̂z

(x)−
J̃
4 ∑
〈xy〉

(
L̂+

(x)L̂
−
(y) + L̂−

(x)L̂
+
(y)

)
. (3.13)

4. Two-species Bose-Hubbard model

The Hamiltonian (3.13) of theO(2) model can be realized in optical lattice experiments if an
appropriate mapping to the Bose-Hubbard model can be found. Interpreting the positive (negative)
eigenvalues of̂Lz as the charges of particles (antiparticles) states associated with a complex scalar
field, it is natural to consider a two-species Bose-Hubbard Hamiltonian on alattice. We use the
following parameterization:

H =−∑
〈xy〉

(taa†
xay +tbb†

xby +h.c.)−∑
x,α

(µ +∆α)nα
x +∑

x,α

Uα

2
nα

x (nα
x −1)+W ∑

x
na

xnb
x + ∑

〈xy〉,α
Vαnα

x nα
y

(4.1)
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with α = a,b indicating the two different species,na
x = a†

xax andnb
x = b†

xbx the number operators,
and|na

x ,n
b
x〉 the corresponding on-site basis. It is possible to adjust the chemical potentials in order

to set〈nx〉 = 〈na
x +nb

x〉 = 2. In the limit whereUa = Ub = W are very large and positive, the on-site
Hilbert space can then be restricted to the states satisfyingnx = 2 at each site. All the other states
(with nx 6= 2) belong to high-energy sectors that are separated from this one by energies of order
U . The three states|2,0〉, |1,1〉 and |0,2〉 correspond to the three states of the spin-1 projection
considered above.

Let us restrict the model to just two sitesx andy for the moment. The Hilbert space consists
of nine states:

|na
x ,n

b
x ;na

y ,n
b
y〉 = |na

x ,n
b
x〉⊗ |na

y ,n
b
y〉, with |na

i ,n
b
i 〉 = |2,0〉, |1,1〉, |0,2〉, i = x,y. (4.2)

ForU,W ≫ tα we consider hopping as perturbation, split the Hamiltonian as:

H0 = ∑
x,α

(µ +∆α)nα
x +

U0

2 ∑
x,α

nα
x (nα

x −1)+W ∑
x

na
xnb

x + ∑
〈xy〉α

Vαnα
x nα

y , (4.3)

HI = −∑
〈xy〉

(taa†
xay + tbb†

xby +h.c.), (4.4)

and proceed with the degenerate perturbation theory. (In the regime of strong onsite repulsion
U0 ≫ (U0−W ),Vα this basis is approximately degenerate.)

At zeroth order intα the matrix elements of the effective Hamiltonian are given by the action
of various number operators on the basis states. At first order the hopping term generates transitions
into the states with higher occupation, that are more energetically costly due to largeU0. These are
“virtual” states and in the chosenn = 2 subspace the first order contribution is zero. At the second
order transitions to the virtual states and back are allowed, and, thus, the hopping generates non-
zero non-diagonal matrix element inHI. Overall, the terms generated at the second order can be
mapped ontoLz, L± operators. The effective second order Hamiltonian (generalized for arbitrary
number of sites and arbitrary fixed occupation number):

He f f =

(
Va

2
− t2

a

U0
+

Vb

2
− t2

b

U0

)
∑
〈xy〉

Lz
(x)L

z
(y) +

−tatb
U0

∑
〈xy〉

(L+
(x)L

−
(y) +L−

(x)L
+
(y))+(U0−W )∑

x
(Lz

x)
2

+

[(
pn
2

Va +∆a −
p(n+1)t2

a

U0

)
−

(
pn
2

Vb +∆b −
p(n+1)t2

b

U0

)]
∑
x

Lz
(x), (4.5)

wherep is the number of neighbors andn is the occupation (p = 2, n = 2 in our case).L̂ is the
angular momentum operator in representationn/2.

Notice that the effective Hamiltonian (4.5) is very similar to (3.13) but contains an extraL̂zL̂z

term. By choosing the hopping amplitudetα =
√

VαU0/2 it can be removed and we have

He f f =
U
2 ∑

x
(Lz

(x))
2− µ̃ ∑

x
Lz

(x)− J ∑
〈xy〉

(Lx
(x)L

x
(y) +Ly

(x)L
y
(y)), (4.6)

where the coefficients are given byU = 2(U0−W ), µ̃ = −(∆a −Va)+(∆b −Vb), andJ =
√

VaVb.
This two-species Bose-Hubbard model can be realized in a87Rb and41K Bose-Bose mixture

where an inter-species Feshbach resonance is accessible. The detailsof this proposal are discussed
in Ref. [1].
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5. Conclusion

In summary, we have considered theU(1)-Higgs model in two dimensions. Neglecting the
plaquette interactions, we have provided an effective theory where link variables are integrated out,
producing 4-field operator. In this approximation, the Nambu-Goldstone modes have disappeared
but can be reintroduced at first order in the plaquette interactions. Our goal is to provide a proof of
principle that some approximate “analog computer" for theU(1)-Higgs model can be build using
cold atoms trapped in an optical lattice. As a first step in this direction, we discussed a recent
proposal to implement theO(2) model (describing the Nambu-Goldstone modes without gauge
fields) on optical lattices using a87Rb and41K Bose-Bose mixture of cold atoms.
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