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1. Introduction

Shortly after the discovery of asymptotic freedom [1, 2] in non-Abelian gauge theories [3], ex-
istence of a new phase of matter was suggested at large baryon density [4] or high temperature [5].
The transition to this new state of matter, quark-gluon plasma (QGP), happens at typical hadronic
scales, O(ΛQCD), where the strong-coupling constant, αs is O(1), and, thus, weak-coupling expan-
sions are not suitable to address this problem.

Wilson’s non-perturbative regularization of quantum field theories on a space-time lattice [6]
provided the necessary framework to study gauge theories at strong coupling, and after pioneering
numerical studies of the SU(2) gauge theory by Creutz [7], investigations of the finite-temperature
transition and properties of the deconfined phase followed [8, 9, 10].

Experimentally quark-gluon plasma can be achieved by colliding heavy nuclei at high enough
energies. This experimental program is being carried out at the Relativistic Heavy-Ion Collider at
BNL and Large Hadron Collider (LHC) at CERN. One of the unexpected findings of RHIC was
that the matter created in the collisions behaves not as a weakly coupled gas, but as a strongly
coupled fluid [11, 12, 13, 14].

2. Chiral crossover

In the path-integral representation the partition function of QCD on the lattice can be written
as:

Z =
∫

DUDψ̄Dψe−S[U,ψ̄,ψ], S[U,ψ, ψ̄] = Sg[U ]+S f [U, ψ̄,ψ], (2.1)

where Sg is the gauge and S f is the fermion action. Path integrals of this form can be evaluated
approximately by designing a Markov Chain Monte Carlo process and sampling the most probable
field configurations.

It has been established by lattice calculations that at the physical values of light and strange
quark masses at zero baryon chemical potential the transition from the hadronic into the deconfined
phase of QCD is a rapid crossover rather than a genuine phase transition [15, 16, 17]. The con-
jectured phase diagram of QCD in µB−T plane is shown in Fig. 1. At low temperature and small
baryon density the strongly interacting matter is in the hadronic phase, where quarks are confined
in hadrons and the SU(2)R×SU(2)L symmetry (of the massless Lagrangian) is spontaneously bro-
ken by the vacuum. At high temperature and/or large baryon chemical potential, quarks and gluons
are deconfined and the chiral symmetry is restored.

Direct Monte Carlo simulations are possible along µB = 0 axis, and the region of not too large
µB/T is accessible indirectly through Taylor expansions in µB/T or reweighting techniques. Thus,
at the moment, the location of the line of first order phase transitions, the critical point, and nature
of the phases at large µB are open questions yet to be answered by ab initio calculations. Interesting
ideas are being pursued to extend Monte Carlo simulations into the region of non-zero chemical
potential [19].

However, even at µB = 0 QCD possesses certain critical behavior, depending on the fermion
content of the theory. The phase diagram of QCD in ml(= mu = md)−ms plane (the Columbia
plot [20]) is shown in Fig. 2. Studies with staggered fermions put the physical point in the crossover
region, not too far from the two-flavor chiral limit ml → 0, which is expected to be in the O(4)
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Figure 1: The phase diagram of QCD in the
µB−T plane.

Figure 2: The phase diagram of QCD in the ml−
ms plane at µB = 0, from [18].

universality class. (This can be quantified by studying how well the universal scaling behavior
with corrections due to finite ml can be applied to the chiral condensate 〈ψ̄ψ〉, which is the order
parameter in the chiral limit, and its susceptibility χ = ∂ 〈ψ̄ψ〉/∂ml .)

The chiral crossover temperature has been determined in the continuum limit at the physi-
cal values of light quark masses by the Wuppertal-Budapest (Tc = 147(2)(3) MeV defined from
the peak in the chiral susceptibility, Tc = 157(3)(3) or 155(3)(3) MeV from the inflection point
of the chiral condensate renormalized in two different ways) [17, 24, 25] and HotQCD (Tc =
154(8)(1) MeV from the O(4) scaling analysis of the chiral condensate and susceptibility) [22]
collaborations using staggered fermions. Given the large cutoff effects due to violations of the taste
symmetry of staggered fermions at computationally feasible lattice spacings, it required a use of
improved fermionic actions, such as stout [26] and highly improved staggered quarks (HISQ) [27],
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Figure 3: Disconnected chiral susceptibility
with DWF at mπ = 135 and 200 MeV [21], com-
pared with HISQ [22].

Figure 4: The renormalized chiral condensate
with Wilson fermions at three values of the pion
mass, in the continuum limit [23].
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Figure 5: Symmetry transformations relating scalar and pseudo-scalar mesons, from [30].

respectively, to reliably calculate this quantity.
It is also important to crosscheck the staggered result in calculations with other types of lattice

fermions. The HotQCD collaboration has continued studying the transition region with the domain-
wall fermions (DWF) [28, 29], which are in particular well-suitable for capturing the chiral aspects
of QCD. Simulations [21] were performed directly at the physical pion mass, mπ = 135 MeV, but
due to the high computational cost, only at one lattice cutoff Nτ = 8. The chiral crossover temper-
ature has been determined from the location of the peak in the disconnected chiral susceptibility,
shown in Fig. 3. The end result, including the systematic uncertainty is Tc = 155(1)(8) MeV, in
agreement with the staggered value [22].

The Wuppertal-Budapest collaboration continued finite-temperature calculations with Wilson
fermions [23] at several values of the pion mass, mπ = 285, 440 and 545 MeV. The results for the
renormalized chiral condensate are shown in Fig. 4 together with the staggered result at the physical
pion mass. They show the correct trend of shifting the transition region to lower temperatures with
decreasing the pion mass, however, the uncertainties are still too large for a quantitative comparison
and require further study.

3. Restoration of the axial symmetry

While lattice simulations with staggered fermions suggest that the transition in 2+1 flavor
QCD in the limit of vanishing light quark masses, ml → 0, is of second order and belongs to the
O(4) universality class, the nature of this transition is far from settled. This is due to the effect
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Figure 6: The chiral, χπ − χσ and χη − χδ (left), and the axial, χπ − χδ (right), symmetry-breaking differ-
ences with domain-wall fermions [21].
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of the axial anomaly on the finite-temperature transition. The full symmetry group of the classi-
cal massless Lagrangian is SU(2)L×SU(2)R×UV (1)×UA(1), however the axial UA(1) symmetry
is anomalous and is broken on the quantum level [31, 32]. If the UA(1) symmetry remains sig-
nificantly broken around the chiral transition, then O(4) universality class is appropriate, but if it
is effectively restored, the transition may be of first order [33] or second order, but in a different
universality class [34]. The strength of symmetry breaking can be analyzed from the behavior of
susceptibilities, which are the 4-volume integrals of the two-point correlation functions in various
channels, e.g. χπ =

∫
d4x〈π(0)π(x)〉 for the pion. Restoration of a symmetry would lead to degen-

eracy in the spectrum, and the symmetry transformations relating pseudo-scalar and scalar mesons
are shown in Fig. 5.

The HotQCD collaboration reported [21] results on the chiral symmetry-breaking differences
χπ − χσ and χη − χδ , Fig. 6 (left) and UA(1)-breaking difference χπ − χδ , Fig 6 (right) with
domain-wall fermions at the physical pion mass. While χπ − χσ is large below Tc, it becomes
zero for T > 164 MeV, indicating restoration of the chiral symmetry. On the contrary, the UA(1)
difference remains large at Tc, indicating no restoration of this symmetry until at least T > 196 MeV.

The UA(1) breaking difference can be related to the spectral density ρ(λ ) of the eigenvalues
of the Dirac operator as

χπ −χδ = lim
m→0

∫
∞

0
dλρ(λ )

4m2

(m2 +λ 2)2 . (3.1)

The JLQCD collaboration studied the spectrum of the Dirac operator with the Möbius domain-wall
and overlap fermions [35, 36]. The results seem to support their earlier findings [37] that ρ(λ ) starts
with cubic powers of λ and when the chiral symmetry is restored, the χπ −χδ difference becomes
insensitive to the axial symmetry breaking, and that the axial symmetry may be effectively restored
close to Tc. Future work may be needed to clarify the fate of the UA(1) symmetry and the nature of
the transition in the chiral limit.

4. Fluctuations of conserved charges

A powerful tool to explore the crossover region and the nature of the degrees of freedom in
the deconfined phase is fluctuations and correlations of various conserved charges. We can define
generalized susceptibilities as derivatives of the pressure:

χ
BQSC
klmn =

∂ (k+l+m+n))[p(µ̂B, µ̂S, µ̂S, µ̂C)/T 4]
∂ µ̂k

B∂ µ̂ l
Q∂ µ̂m

S ∂ µ̂n
C

∣∣∣∣∣
µ=0

(4.1)

where µ̂i = µi/T , i = B,Q,S,C are the dimensionless chemical potentials for the baryon number,
electric charge, strangeness and charm, respectively. (We use a convention to drop a superscript in
χ

BQSC
klmn when the corresponding subscript is zero.)

At low temperature fluctuations of various charges are suppressed due to confinement, while at
high temperature they should approach ideal quark gas values. It has been recently shown how the
electric charge fluctuations can be used for ab initio determination of the freeze-out parameters (i.e.
values of the temperature, T f , and baryon chemical potential, µ

f
B , at which system hadronizes at

the end of the evolution in heavy-ion collisions) [38, 39] and also to probe the strangeness carrying

5
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degrees of freedom in the high-temperature phase [40, 41]. These results have been summarized in
the last year’s review by Szabo [42].

There are several new developments this year. The electric charge fluctuations are of particular
interest, because they can be measured well in the heavy-ion experiments. Unfortunately, in calcu-
lations with staggered fermions they are the most sensitive to the taste breaking effects and require
substantial computational effort for full control of the continuum limit. The Wuppertal-Budapest
collaboration reported about ongoing calculations of χ

Q
2 and χ

Q
4 and attempts of continuum extrap-

olation [43]. The BNL-Bielefeld-CCNU collaboration continued calculations of the sixth-order
cumulants with the aim of determining possible critical behavior and exploring the QCD phase
diagram [44].

The phenomenology of heavy-ion collisions provides strong evidence [45] that the thermody-
namics of the hadronic phase up to about the chiral crossover temperature can be well described
by a gas of uncorrelated hadrons and resonances – the Hadron Resonance Gas (HRG) model [46].
The HRG partition function is a product of individual partition functions of all states in the QCD
spectrum, often approximated by taking all known states from the particle data tables (PDG) [47].
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Figure 7: Ratios of susceptibilities (top) and linear
combinations of susceptibilities that project bary-
onic and mesonic sectors (bottom) calculated on
the lattice (symbols) and in the hadron resonance
gas model with the PDG spectrum (solid lines) and
with the spectrum predicted by the quark model
(dotted lines). The HRG with the PDG spectrum
significantly underpredicts the lattice data.
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Figure 8: Similar to Fig. 7 for observables that
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It has been noted that certain quantities, such as strangeness fluctuations and correlations of
strangeness and baryon number, are larger in QCD than in HRG with PDG spectrum [48, 49],
and argued that these differences provide evidence for contribution of additional, not yet observed
experimentally, hadron resonances. The BNL-Bielefeld-CCNU collaboration reported [50] their
findings [51, 52] on the possible thermodynamic relevance of these states. Out of various gen-
eralized susceptibilities, Eq. (4.1), calculated on the lattice with HISQ fermions and two cutoffs,
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Nτ = 6 and 8, they construct combinations, that project on various baryon number and strangeness
sectors. The results are then compared with two versions of the HRG model: with spectrum taken
from PDG and with the one that includes states predicted by quark model calculations, Fig. 7 and 8.
Clearly, including the additional states provides a much better description of the lattice data. This
also has implications for the determination of the freeze-out temperature for strange hadrons [52].

While at low temperature the susceptibilities help to test the HRG model, and in the transition
region indicate a switch in the dominant degrees of freedom in the system, at high temperatures,
deeply in the deconfined phase, they should eventually reach perturbative behavior. A recent calcu-
lation of the second (in the continuum) and fourth (at several cutoffs) order quark number suscep-
tibilities indicates reasonable agreement with weak-coupling expansions for T & 400 MeV [53],
given the uncertainties of the latter. However, more work is needed for controlling the cutoff effects
and taking the continuum limit for the fourth-order susceptibilities at high temperature.

5. The equation of state

A change from the confined into the deconfined phase is signaled by the rapid increase in
the pressure, p, and energy density, ε . These quantities signal deconfinement of the degrees of
freedom with quantum numbers of quarks and gluons and approach the Stefan-Boltzmann limit at
asymptotically high temperatures.

A lattice calculation of the equation of state usually starts with evaluation of the trace of the
energy-momentum tensor, also called the trace anomaly, or the interaction measure:

Θµµ(T )
T 4 =

ε−3p
T 4 = T

d
dT

( p
T 4

)
. (5.1)

The pressure can then be calculated by integrating the trace anomaly, starting from some reference
value p0(T0):

p(T )
T 4 =

p0

T 4
0

+
∫ T

T0

dT ′
Θµµ

T ′5
. (5.2)

All other thermodynamic quantities that are derivatives of the partition function with respect to the
temperature can be calculated from Eqs. (5.1) and (5.2), using various thermodynamic identities.

5.1 N f = 0

What makes the calculation of the equation of state on the lattice numerically expensive is
the additive renormalization arising from the breaking of the Lorentz symmetry by the lattice. For
every value of the gauge coupling one needs to evaluate a zero-temperature subtraction for the trace
anomaly. The fixed-scale approach can potentially reduce the cost of zero-temperature calculations,
since in this scheme the temperature T = 1/(aNτ) is varied by changing Nτ at fixed a (so only one
zero-temperature calculation is needed for several temperatures). Possible temperatures are then
limited by a few integer values of Nτ .

By using recently proposed shifted boundary conditions [54]

U4(~x,Nτ) = U4(~x+~s,0), (5.3)

7
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Figure 9: The plaquette susceptibility (left) and the trace anomaly (right) for SU(3) pure gauge theory,
calculated at one lattice spacing using shifted boundary conditions.

where U is the gauge link variable, Nτ is the temporal extent of the lattice and~s is the shift vector,
one can cover more temperatures, T = 1/

√
a2N2

τ +~s2, by varying ~s in conjunction with Nτ . A
calculation for SU(3) pure gauge theory at single lattice spacing of about 0.1 fm has been recently
reported [55]. The plaquette susceptibility, used to determine Tc = 293 MeV, is shown in Fig. 9
(left) and the trace anomaly in Fig. 9 (right) together with the continuum result of Ref. [56].

5.2 N f = 2

The tmfT collaboration made progress in calculation of the equation of state with two flavors
of twisted mass Wilson fermions [57]. The simulations were performed at three values of the pion
mass, mπ = 360, 430 and 640 MeV and the continuum limit was taken. The results for the trace
anomaly, pressure and energy density for the lowest pion mass are shown in Fig. 10 (left). Around
400 MeV the energy density and pressure reach only about half of the Stefan-Boltzmann limit

Figure 10: Left: The trace anomaly, energy density and pressure for two flavors of twisted mass Wilson
fermions at mπ = 360 MeV. Right: The trace anomaly for two flavors of twisted mass Wilson fermions at
three values of mπ compared with the pure gauge and 2+1 flavor staggered results.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
9
2

Lattice QCD at Non-Zero Temperature Alexei Bazavov

(ε-3p)/T4

p/T4

s/4T4

 
 
 

0

1

2

3

4

130 170 210 250 290 330 370

T [MeV]

stout HISQ 3p/T4

ε/T4

3s/4T3

 0

 4

 8

12

16

130 170 210 250 290 330 370

T [MeV]

HRG

non-int. limit

Tc

Figure 11: Comparison of the continuum results
for the trace anomaly, pressure and entropy den-
sity for the stout and HISQ action.

Figure 12: Comparison of the pressure, energy
and entropy density calculated with HISQ with
the HRG results.

value. And in Fig. 10 (right) the two-flavor trace anomaly for three pion masses is compared with
the pure gauge [56] and 2+1 flavor [58] results.

5.3 N f = 2+1

For 2+1 flavor QCD the equation of state is now available at the physical pion mass in the
continuum limit from the Wuppertal-Budapest collaboration [59] that used stout fermions and the
HotQCD collaboration [58] that used HISQ. A comparison of these results for the trace anomaly,
pressure and entropy density, s = (ε + p)/T , is shown in Fig. 11. In general, there is good agree-
ment between them, with deviation of about 2σ in the integrated quantities arising around 400 MeV.
In Fig. 12 the HISQ results for the pressure, energy and entropy density are compared with the HRG
results. The yellow-shaded box represents the chiral crossover region.

The second-order derivatives of the free energy can also be constructed, the specific heat is

CV =
∂ε

∂T

∣∣∣∣
V
≡
(

4
ε

T 4 + T
∂ (ε/T 4)

∂T

∣∣∣∣
V

)
T 3, (5.4)

where the second term is related to the trace anomaly and its derivative:

T
d(ε/T 4)

dT
= 3

Θµµ

T 4 +T
d(Θµµ/T 4)

dT
, (5.5)

and the speed of sound is

c2
s =

∂ p
∂ε

=
∂ p/∂T
∂ε/∂T

=
s

CV
. (5.6)

The speed of sound is of phenomenological interest, because the softest point of the equation
of state, i.e. where the speed of sound reaches the minimum, corresponds to the temperature
and energy density range where the system spends longer time and the expansion and cooling
of matter slows down. For this reason one may expect to observe characteristic signatures from
this stage of the evolution of QGP in heavy-ion collisions [60]. The speed of sound is shown
in Fig. 13. It appears that the softest point is reached at the low side of the crossover region, at
T ' (145−150) MeV.

9
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Figure 14: Pressure calculated with HISQ, in the
EQCD and in HTL perturbation theory.

The lattice equation of state can now be compared with the perturbative calculations to de-
termine at what temperature weak-coupling expansions may be trusted. In Fig. 14 the pressure is
compared with the perturbative calculations in the Hard Thermal Loop (HTL) [61] and Electro-
static QCD (EQCD) [62] schemes. Given the large uncertainty from varying the scale in the HTL
calculation, the results generally agree, but it appears that lattice calculations at higher temperatures
will be needed to reliably connect the lattice equation of state to a perturbative one and determine
which, HTL or EQCD calculation, describes the equation of state better.

5.4 N f = 2+1+1

Apart from presenting their final result on the 2+1 flavor equation of state [59], the Wuppertal-
Budapest collaboration has also extended their calculation of the 2+1+1 flavor equation of state [63].
For the latter case they use the stout action with four levels of smearing, called 4stout (while two
levels of smearing were used in the previous work). They show that at T = 214 MeV the value of
the trace anomaly with and without the dynamical charm is the same, in line with the perturbative
observation that the charm contribution starts to matter around 300 MeV [62]. The 2+1+1 flavor
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Figure 16: Pressure in 2+1+1 flavor QCD with
the 4stout action together with the 2+1 flavor con-
tinuum and HRG results.

10



P
o
S
(
L
A
T
T
I
C
E
2
0
1
4
)
3
9
2

Lattice QCD at Non-Zero Temperature Alexei Bazavov

Figure 17: Left: Pressure at O(µ4
B) on Nτ = 6 lattice with HISQ. The electric charge to baryon number ratio

is set to 0.4, similar to the one encountered in heavy-ion collision experiments. Right: Pressure at various
orders in µB on the freeze-out curve, on Nτ = 6 lattice with HISQ.

trace anomaly with the 4stout action at Nτ = 6, 8 and 10 is shown in Fig. 15 and compared with
the continuum 2+1 flavor result and the perturbative HTL calculation. To cover a wide temperature
range 300 < T < 1000 MeV and set the line of constant physics, the range of gauge couplings is
split into three regions. The lattice scale is then set in different ways: from spectroscopy at coarse
lattices, from simulations at the ml = ms flavor symmetric point at intermediate lattices and from
the w0 scale determined with the Wilson flow [64] at fine lattices. The results for the pressure are
shown in Fig. 16.

5.5 N f = 2+1, µB > 0

The susceptibilities defined in Eq. (4.1) are the coefficients of the Taylor expansion of the
pressure with respect to the chemical potentials, and they can be used to extend the equation of
state to non-zero baryon chemical potential. The BNL-Bielefeld-CCNU collaboration calculated
the pressure and energy density at O(µ4

B) at several values of the chemical potential up to µB/T = 2,
by measuring the second and fourth order susceptibilities to very high precision at Nτ = 6 and 8
lattices with the HISQ action [65]. The results for the pressure are shown in Fig. 17 (left). By
using a parametrization of the freeze-out curve that relates (T f ,µ

f
B) to the beam energy s1/2

NN [66]
the equation of state can also be calculated along that curve. The pressure on the freeze-out curve
is shown in Fig. 17 (right). The fourth-order equation of state can be useful down to beam energy
s1/2

NN ∼ 20 GeV, while below that energy higher-order terms will be needed for correct description.

6. In-medium properties of mesons

While the dynamics of the chiral crossover in QCD is determined by the light degrees of free-
dom, heavy quarks play a special role in understanding the properties of the deconfined medium.
In heavy-ion collisions heavy quarks are created at the early stages of the quark-gluon plasma for-
mation and can serve as probes of the medium. Melting of the heavy-quark bound states due to the
color screening in the plasma was suggested as a signature of QGP formation [67].

11
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Consider a local mesonic operator of the form:

JH(t,~x) = q̄(t,~x)ΓHq(t,~x) (6.1)

where q(t,~x) is the quark field operator and ΓH denotes possible γ-matrix structure of the state (e.g.
pseudoscalar, vector, etc.).

Defining the real time two-point functions of the currents (6.1):

D>
H(t,~x) = 〈JH(t,~x)JH(0,~0)〉, D<

H(t,~x) = 〈JH(0,~0)JH(t,~x)〉, t > 0 (6.2)

and making the Fourier transform

D>(<)
H (ω,~p) =

∫
∞

−∞

dt
∫

d3xeiωt−i~p·~xD>(<)
H (t,~x) (6.3)

we can define the spectral function

ρ(ω,~p) =
1

2π
(D>

H(ω,~p)−D<
H(ω,~p)). (6.4)

Most of the dynamic properties of the state and its behavior in the medium are encoded in the
spectral function. A stable state of mass M contributes a δ -function peak of the form:

ρ(ω,~p) = |〈0|JH |H〉|2θ(ω)δ (p2−M2). (6.5)

Broadening of such a peak with increasing temperature describes thermal modification of the state,
and its disappearance signals melting of the state. Evaluation of the spectral function requires
calculating real time two-point functions, to which lattice does not have direct access. Instead,
lattice simulations are done in Euclidean space-time and produce Euclidean correlation functions:

G(τ,~p) =
∫

d3xei~p.~x〈JH(τ,~x)JH(0,~0)〉, (6.6)

which are analytic continuations of D>
H(t,~p) as

G(τ,~p) = D>
H(−iτ,~p). (6.7)

The relation between the Euclidean correlator and the spectral function is more complicated:

G(τ,~p) =
∫

∞

0
dωρ(ω,~p)K(ω,τ), (6.8)

K(ω,τ) =
cosh(ω(τ−1/2T ))

sinh(ω/2T )
, (6.9)

and, unlike the Fourier transform, does not allow for direct inversion.
To reconstruct the spectral function ρ(ω,~p) from the correlator in the l.h.s. of Eq. (6.8) (or, in

other words, solve the integral equation for ρ), Bayesian techniques are often employed, that try to
maximize the conditional probability P[ρ|DH] that ρ(ω,~p) is the correct spectral function given
data D and some prior knowledge H. One of such techniques, often applied to this problem, is the
Maximum Entropy Method (MEM) [68]. In this method the Shannon-Janes entropy:

S =
∫

dω

[
ρ(ω)−m(ω)−ρ(ω) ln

(
ρ(ω)
m(ω)

)]
(6.10)

12
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Figure 18: Left: Spectral function in the ηc channel for several values of T . Right: Dispersion relation of
ηc at three temperatures [69].
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Figure 19: Temperature dependence of spectral functions in the ηc (left) and J/ψ (right) channel [70].

incorporates the positivity of the spectral function and all other prior knowledge is parametrized by
m(ω), which is called the default model. The conditional probability is then

P[ρ|DH] = exp
(
−1

2
χ

2 +αS
)

, (6.11)

where α is a real parameter.

6.1 Charmonium spectral functions

Ikeda et al. [69] developed a modification of MEM to study charmonium spectral functions at
finite momentum. Using quenched QCD configurations and Wilson fermions in the valence sector
they calculated charmonium correlators in the pseudoscalar channel (ηc). Working on anisotropic
lattices aσ/4 = aτ = 0.00975 fm they covered a temperature range (0.78− 1.78)Tc. The spectral
function of ηc at several temperatures is shown in Fig. 18 (left). Presence of a well pronounced
peak at 1.7Tc is interpreted as survival of the ηc state up to that temperature. Having the spectral
function allows for calculating the dispersion relation, defined in this case as the dependence of the
peak position on momentum p. This dispersion relation is shown in Fig. 18 (right) and it seems to
be described by the vacuum form ω =

√
m2 + p2 up to 1.7Tc.
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Figure 20: Temperature dependence of spectral functions in the ϒ (left) and χb1 (right) channel [71].
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Figure 21: ϒ (left) and χb1 (right) spectral functions at T = 0 and 249 MeV [72, 73].

The Wuppertal-Budapest collaboration calculated the charmonium spectral functions in the
pseudoscalar and vector channels using 2+1 flavors of dynamical Wilson quarks with the pion
mass mπ = 545 MeV [70]. They employed isotropic lattices down to 0.057 fm. The results are
shown in Fig. 19. Apart from the reconstruction of the spectral functions with MEM, the analysis
of the Euclidean correlators was also performed, leading to a conclusion that no melting of ηc and
J/ψ mesons was observed up to a temperature of 1.4Tc.

6.2 Bottomonium spectral functions

The bottom quark is substantially heavier and controlling the discretization errors is harder,
therefore effective theories are often used.

The FASTSUM collaboration performed a calculation of the bottomonium spectral functions
with MEM using Non-Relativistic QCD (NRQCD) [71] for the bottom quark. For the gauge back-
ground they used 2+1 flavors of clover improved Wilson quarks with the pion mass mπ = 400 MeV.
The spectral functions for S- and P-wave channels (ϒ and χb1 mesons) are shown in Fig. 20. The
ground state peak in the S-wave case, present at all temperatures, indicates the survival of ϒ up to
the highest temperature of 1.9Tc. In the P-wave case disappearance of the peak is observed slightly
above Tc, indicating dissociation of χb1 once the deconfined phase is reached.

Kim et al. [72, 73] calculated the bottomonium spectral functions also employing NRQCD for
the bottom quark, but on a different gauge background of 2+1 flavors of highly improved staggered
quarks with the pion mass mπ = 160 MeV. They also used a different Bayesian approach, recently
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Figure 22: The strategy for extracting the imaginary part of the static quark potential by reconstructing the
spectral function of a Wilson loop, from [75].

suggested in Ref. [74]. The S- and P-wave spectral functions at T = 0 and T = 249 MeV are shown
in Fig. 21. In this case, contrary to the finding of the previous group, the P-wave state features a
peak at T = 1.6Tc (taking Tc = 154 MeV), signaling no dissociation of χb1 in the plasma up to that
temperature. Clearly, further studies are needed to resolve the tension between these two results.

6.3 Static quark potential at finite temperature

The static quark potential at zero temperature is a well-known quantity that has been studied
since the early days of lattice QCD. It is often used to set the scale in lattice calculations, since its
measurement is numerically cheap. At finite temperature the color singlet free energy of a static
quark anti quark pair is sometimes used as a proxy for it. The situation is, however, more involved.
The potential is related to the late real-time behavior of the rectangular Wilson loop:

V (r) = lim
t→∞

i∂tW (t,r)
W (t,r)

, W (t,r) =
〈

exp
[
− ig

∫
�

dxµAµ(x)
]〉

, (6.12)

and, in general, it is complex valued. At finite temperature, the familiar real part describes the
Debye color screening, while the imaginary part is related to the Landau damping in the plasma.
Since the real-time behavior is not accessible in Euclidean lattice formalism, the imaginary part of
the potential cannot be measured directly in Monte Carlo simulations. However, a strategy similar
to the one used for spectral functions can be applied, as sketched in Fig. 22. By finding the spectral
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decomposition of the Euclidean Wilson loop

W (τ,r) =
∫

dωe−ωτ
ρ(ω,r) (6.13)

one can use the spectral function to calculate the complex-valued potential

V (r) = lim
t→∞

∫
dω ωe−iωtρ(ω,r)∫
dω e−iωtρ(ω,r)

. (6.14)

Burnier et al. [75, 76] calculated Wilson line correlators in the Coulomb gauge (which are less noisy
than Wilson loops) on quenched and dynamical 2+1 flavor asqtad lattices, covering the temperature
range 210 6 T 6 839 MeV and 148 6 T 6 248 MeV, respectively. The results for the real and
imaginary part of the potential for the quenched case are shown in Fig. 23. The real part is compared
with the color singlet free energy, calculated on the lattice, and the imaginary part with the HTL
result at leading order. The results for the imaginary part are consistent with the ones obtained
recently by using HTL-inspired spectral functions and fitting their parameters to measured Wilson
line correlators [77].

7. Summary

There have been many interesting developments in finite-temperature lattice QCD in 2014,
and some of them, summarized in this review, are listed below. Calculations with domain-wall
fermions confirm the staggered result on the chiral crossover temperature Tc and favor restoration
of the axial symmetry considerably above Tc. Fluctuations and correlations of conserved charges
can be used to construct observables that relate to the ones measured in heavy-ion collision ex-
periments and, in particular, efforts to calculate higher order cumulants of the electric charge are
ongoing. The results on the equation of state in 2+1 flavor QCD at the physical pion mass in
the continuum limit are now available and agreement between the stout and HISQ calculations is
demonstrated in 130−400 MeV range. A new method for calculating the equation of state on the
lattice using non-conventional boundary conditions has been introduced and tested for SU(3) pure
gauge theory. Several groups continue calculations of the spectral functions for heavy quarkonia
and new techniques for extracting spectral functions have been introduced.
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