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and experimentally measured electric charge fluctuations. Next, we present thermodynamic sig-
natures of additional, yet unobserved strange hadrons and discuss their influence on the freeze-out
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1. Introduction

Proximity of a second order criticality, such as the O(4) chiral phase transition or the QCD
critical point, is universally manifested through long-range correlations at all length scales, result-
ing in increased fluctuations of the order parameter. These fluctuations can be quantified through
the Gaussian (variance) as well as non-Gaussian (skewness, kurtosis etc.) cumulants of the dis-
tribution of the order parameter. The higher non-Gaussian cumulants grows with higher powers
of the correlation length [1] and become increasingly sensitive to the proximity of a criticality.
Moreover, even qualitative features, such as the sign change and the associated non-monotonicity,
of these non-Gaussian cumulants can encode the presence of a nearby critical region [2, 3, 4]. The
non-Gaussian cumulants of the order parameter can be accessed in heavy-ion experiments via the
event-by-event fluctuations of various conserved charges and particle multiplicities [5, 6, 7, 8, 9].
In this vein, a major focus of the Beam Energy Scan program at the Relativistic Heavy-Ion Collider
is measurements of the event-by-event fluctuations of particle multiplicities and conserved charges
[10, 11, 12, 13, 14, 15].

2. Charge fluctuations and freeze-out conditions

Although a direct lattice QCD computation at non-zero baryon (µB), electric charge (µQ) or
strangeness (µS) chemical potentials remains difficult due to the infamous sign problem, higher
cumulants of fluctuations of these conserved charges can be computed on the lattice using the
well established method of Taylor expansion. In this method one expands the logarithm of the
QCD partition function, lnZ, or the pressure, P = −T ln(Z)/V , in a power series of the chemical
potentials around vanishing values of the chemical potentials. For the electric charge chemical
potential

P(T,µQ)

T 4 =
∞

∑
n=0

1
n!

χ
Q
n (T )

(
µQ

T

)n
, where χ

Q
n (T ) =

1
V T 3

∂ n lnZ

∂ (µQ/T )n

∣∣∣∣
µQ=0

. (2.1)

Here, V and T denote the volume and the temperature respectively. Since the generalized charge
susceptibilities, χX

n , are defined at vanishing chemical potentials, standard lattice QCD techniques
can be used to compute them. Among several conserved charges, the net electric charge is of
special interest as its fluctuations can be measured both in experiments [12, 15] as well as in lattice
QCD through the calculations of its generalized susceptibilities [16, 17]. Further, Taylor expansion
in a powers of µB, around µB = 0, can be employed to obtain these susceptibilities for µB > 0,

χ
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. (2.2)

These susceptibilities are the measures for the fluctuations of the net electric charge

χ
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, (2.3)
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Figure 1: (Left) A comparison between the lattice QCD results for RQ
31 and the STAR data [12] for

(SQσ3
Q)/MQ at

√
s = 62.4 GeV. The overlap of the experimental results with the lattice QCD calculations

provides an upper bound on the freeze-out temperature T f ≤ 155 MeV. (Right) Lattice QCD results for RQ
12

as a function of µB compared with the STAR data [12] for MQ/σ2
Q in the temperature range T f = 150(5)

MeV. The overlap regions of the experimentally measured results with the lattice QCD calculations provide
estimates for the freeze-out chemical potential µ

f
B for a given

√
s. The arrows indicate the corresponding

values of µ
f

B obtained from the statistical hadronization model fits to the experimentally measured hadrons
yields [18].

where NQ is the net (positive minus negative) charge and δNQ = NQ−〈NQ〉.
On the other hand, through the measurements of the event-by-event distributions of the net

electric charge, heavy-ion experiments provide various cumulants, mean (MQ), variance (σQ),
skewness (SQ), and kurtosis (κQ), of the electric charge fluctuations for given beam energy (

√
s)

[12]
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s
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s
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4
〉
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Q

−3 . (2.4)

Thus, the charge susceptibilities obtained from the lattice QCD calculations and the cumulants
measured in the heavy-ion experiments are directly related to each other through the appropriate
volume-independent ratios [19]

MQ (
√

s)
σ2

Q (
√

s)
=

χ
Q
1 (T,µB)

χ
Q
2 (T,µB)

≡ RQ
12 , (2.5a)

SQ (
√

s)σ3
Q (
√

s)

MQ (
√

s)
=

χ
Q
3 (T,µB)

χ
Q
1 (T,µB)

≡ RQ
31 . (2.5b)

In heavy-ion collision experiments the only tunable parameter is the beam energy,
√

s. How-
ever, to gain access to the information regrading the QCD phase diagram this tunable parameter
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needs to be related to the thermodynamic variables, temperature and baryon chemical potential.
Traditionally, this

√
s↔ (T,µB) mapping has been done by relying on the statistical hadronization

model based analysis [18]. Recent advances in heavy-ion experiments as well as in lattice QCD
calculations have placed us placed us in a unique situation where, for the first time, this mapping
can now be obtained through direct comparisons between the experimental results and rigorous
(lattice) QCD calculations. Recently, it has been shown [19] that by directly comparing lattice
QCD calculations for RQ

31 [Eq. 2.5b] and RQ
12 [Eq. 2.5a] with their corresponding cumulant ratios

measured in heavy-ion experiments it is possible to extract the thermal parameters, namely the
freeze-out temperature, T f , and the freeze-out baryon chemical potential µ

f
B . The feasibility of

such a procedure has been demonstrated in Refs. [20, 21, 22]. Fig. 1 illustrates a recent example
of such a comparison and the subsequent determination of the freeze-out parameters.

3. Influence of additional hadrons on the freeze-out temperature

As can be seen from the Fig. 1, due to large errors on the experiment results for (SQσ3
Q)/MQ,

at present, only an upper limit on freeze-out temperature can be determined using the method
described above. Thus, a complementary procedure for determination of T f , relying on a separate
observable that can be extracted both from heavy-ion experiments and lattice QCD calculations, is
certainly welcome. Recently, such a complementary procedure for determination of T f has been
proposed in Ref. [23]. This procedure takes advantage of the fact that the initially colliding nuclei
in heavy-ion collisions are free of net strangeness. Thus, the conservation of strangeness under
strong interaction ensures that the QGP medium created during the collisions of these heavy-ions
is also strangeness neutral.

By Taylor expanding the net strangeness density, 〈nS〉(µB,µS), in µB and subsequently impos-
ing the strangeness neutrality condition, 〈nS〉(µB,µS) = 0, for a homogeneous thermal medium the
strangeness chemical potential, µS, can be obtained as [23]

µS

µB
= s1(T )+ s3(T )

(
µB

T

)2
+O

[(
µB

T

)4
]
. (3.1)

The coefficients s1, s3, etc. consist of various generalized baryon, charge and strangeness sus-
ceptibilities defined at vanishing chemical potentials and are accessible to standard lattice QCD
computations at zero chemical potentials. Fig. 2 (left) shows the leading order contribution to
µS/µB, i.e. s1(T ). A comparison of the lattice result with the predictions from the hadron reso-
nance gas model reveal that the inclusion of only experimentally observed, as listed by the Particle
Data Group [24], hadrons fails to reproduce the lattice data around the crossover region. Note that,
while µS(T,µB) is unique in QCD, for a hadron gas it depends on the relative abundances of the
open strange baryons and mesons. For fixed T and µB, a strangeness neutral hadron gas having a
larger relative abundance of strange baryons over open strange mesons naturally leads to a larger
value of µS. Astonishingly, the inclusion of additional but yet unobserved strange hadrons predicted
within the quark model [25, 26] provides a much better agreement with lattice results, hinting that
these additional hadrons become thermodynamically relevant close to the crossover temperature
[23]. In fact, other lattice thermodynamics studies also indicate that additional, unobserved charm
hadrons also become thermodynamically relevant close to the QCD crossover [27].
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Figure 2: (Left) Lattice QCD results [23] for µS/µB at the leading order, i.e. s1(T ). The dotted line
(PDG-HRG) shows the results of hadron resonance gas model containing only hadrons listed by the Particle
Data Group [24]. The solid line (QM-HRG) depicts the result for a hadron gas when additional, yet unob-
served, quark model predicted strange hadrons [25, 26] are included. The shaded region indicate the chiral
crossover region Tc = 154(9) MeV [28]. (Right) A comparison between the experimentally extracted values
of (µ f

S /µ
f

B ,µ
f

B/T f ) (filled points) with the lattice QCD results for µS/µB (shaded bands) [23]. The lattice
QCD results are shown for µB/T = µ

f
B/T f . The temperature range where lattice QCD results match with

µ
f

S /µ
f

B provide the values of T f , i.e. T f = 155(5) MeV and 145(2) MeV for
√

s = 39 GeV and 17.3 GeV,
respectively.

On the other hand, the experimentally measured yields of the strangeness, S, anti-baryons to
baryons at the freeze-out are determined by the thermal freeze-out parameters (T f ,µ f

B ,µ
f

S ) [18]

RH(
√

s) = exp

[
−2µ

f
B

T f

(
1−

µ
f

S

µ
f

B

|S|

)]
. (3.2)

By fitting the experimentally measured values of RΛ, RΞ and RΩ, corresponding to |S| = 1,2 and
3, the values of µ

f
S /µ

f
B and µ

f
B/T f , as ‘observed’ in a heavy-ion experiment at a given

√
s, can

easily be extracted. Matching these experimentally extracted values of µ
f

S /µ
f

B with the lattice
QCD results for µS/µB as a function of temperature, one can determine the freeze-out temperature
T f . Fig. 2 (right) illustrate this procedure. Once again, the inclusion of additional, yet unobserved
strange hadrons in the hadron gas model leads to very similar values of the freeze-out temperatures
as obtained using the lattice data. However, including only the hadrons listed by the Particle Data
Group [24] yields freeze-out temperatures that are 5−8 MeV smaller.
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